
Minimum Spanning Tree
(MST)

By

Dr. GC Jana

Minimum Spanning Tree (MST)

What is a Spanning Tree?

A spanning tree is a subset of Graph G,

such that all the vertices are

connected using minimum possible

number of edges.

Hence, a spanning tree does not have

cycles and a graph may have more

than one spanning tree.

Properties of a Spanning Tree

•A Spanning tree does not exist for a

disconnected graph.

•For a connected graph having N vertices then

the number of edges in the spanning tree for that

graph will be N-1.

•A Spanning tree does not have any cycle.

•We can construct a spanning tree for a complete

graph by removing E-N+1 edges, where E is the

number of Edges and N is the number of vertices.

•Cayley’s Formula: It states that the number

of spanning trees in a complete graph with N

vertices is N^N-2

•For example: N=4, then maximum

number of spanning tree possible = 4^4-2

= 16 (shown in the above image).

What is Minimum Spanning Tree (MST)

A minimum spanning tree (MST) is defined as a spanning tree that has the

minimum weight among all the possible spanning trees.

Necessary conditions for Minimum Spanning Tree:

1.It must not form a cycle i.e, no edge is

traversed twice.

2.There must be no other spanning tree with

lesser weight.

Properties of Minimum Spanning Tree (MST)
•A minimum spanning tree connects all the

vertices in the graph, ensuring that there is

a path between any pair of nodes.

•An MST is acyclic, meaning it contains no

cycles. This property ensures that it

remains a tree and not a graph with loops.

•An MST with V vertices (where V is the

number of vertices in the original graph)

will have exactly V – 1 edges, where V is

the number of vertices.

•An MST is optimal for minimizing

the total edge weight, but it may

not necessarily be unique.

•The cut property states that if you

take any cut (a partition of the

vertices into two sets) in the

original graph and consider the

minimum-weight edge that crosses

the cut, that edge is part of

the MST.

Possible Multiplicity:
If G(V, E) is a graph then every spanning

tree of graph G consists of (V – 1) edges,

where V is the number of vertices in the

graph and E is the number of edges in the

graph. So, (E – V + 1) edges are not a part

of the spanning tree.

There may be several minimum spanning

trees of the same weight. If all the edge

weights of a graph are the same, then

every spanning tree of that graph is

minimum.

Each of the spanning trees has the same
weight equal to 2.

Cut property:

For any cut C of the graph, if the weight of

an edge E in the cut-set of C is strictly

smaller than the weights of all other edges

of the cut-set of C, then this edge belongs

to all the MSTs of the graph. Below is the

image to illustrate the same:

Cycle property:

For any cycle C in the graph, if the weight of an edge E of C is larger than the

individual weights of all other edges of C, then this edge cannot belong to

an MST. In the above figure, in cycle ABD, edge BD can not be present in any

minimal spanning tree because it has the largest weight among all the edges in

the cycle.

Uniqueness:

If each edge has a distinct

weight then there will be

only one, i.e., a unique

minimum spanning tree.

Minimum Cost Subgraph
For all the possible spanning

trees, the minimum spanning tree

must have the minimum weight

possible. However, there may

exist some more spanning with

the same weight that of minimum

spanning tree, and those all may

also be considered as Minimum

Spanning tree.

•Minimum Cost Edge: If the minimum cost edge of a
graph is unique, then this edge is included in any
MST. For example, in the above figure, the
edge AB (of the least weight) is always included in
MST.

•If a new edge is added to the spanning tree then it
will become cyclic because every spanning tree is
minimally acyclic. In the above figure, if
edge AD or BC is added to the resultant MST, then it
will form a cycle.

•The spanning tree is minimally connected, i.e., if any
edge is removed from the spanning tree it will
disconnect the graph. In the above figure, if any edge
is removed from the resultant MST, then it will
disconnect the graph.

Algorithms for finding Minimum
Spanning Tree(MST):

1.Prim’s MST Algorithm

2.Krushkal’s MST Algorithm

3.Boruvka’s Algorithm

4.Reverse-Delete Algorithm

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/boruvkas-algorithm-greedy-algo-9/
https://www.geeksforgeeks.org/reverse-delete-algorithm-minimum-spanning-tree/

Prim’s Algorithm for Minimum Spanning
Tree (MST)
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

How does Prim’s Algorithm Work?
The working of Prim’s algorithm can be described by using the following steps:

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in

the MST (known as fringe vertex).

Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit

Illustration of Prim’s Algorithm:
Consider the following graph as an example for which we need to find the Minimum Spanning Tree
(MST).

Illustration of Prim’s Algorithm:
Step 1: Firstly, we select an arbitrary vertex that acts as the starting vertex of the Minimum Spanning Tree.
Here we have selected vertex 0 as the starting vertex.

Illustration of Prim’s Algorithm:
Step 2: All the edges connecting the incomplete MST and other vertices are the edges {0, 1} and {0, 7}.
Between these two the edge with minimum weight is {0, 1}. So include the edge and vertex 1 in the
MST.

Illustration of Prim’s Algorithm:
Step 3: The edges connecting the incomplete MST to other vertices are {0, 7}, {1, 7} and {1, 2}. Among
these edges the minimum weight is 8 which is of the edges {0, 7} and {1, 2}. Let us here include the edge
{0, 7} and the vertex 7 in the MST. [We could have also included edge {1, 2} and vertex 2 in the MST].

Illustration of Prim’s Algorithm:
Step 4: The edges that connect the incomplete MST with the fringe vertices are {1, 2}, {7, 6} and {7, 8}.
Add the edge {7, 6} and the vertex 6 in the MST as it has the least weight (i.e., 1).

Illustration of Prim’s Algorithm:
Step 5: The connecting edges now are {7, 8}, {1, 2}, {6, 8} and {6, 5}. Include edge {6, 5} and vertex 5 in
the MST as the edge has the minimum weight (i.e., 2) among them.

Illustration of Prim’s Algorithm:
Step 6: Among the current connecting edges, the edge {5, 2} has the minimum weight. So include that
edge and the vertex 2 in the MST.

Illustration of Prim’s Algorithm:
Step 7: The connecting edges between the incomplete MST and the other edges are {2, 8}, {2, 3}, {5,
3} and {5, 4}. The edge with minimum weight is edge {2, 8} which has weight 2. So include this edge
and the vertex 8 in the MST.

Illustration of Prim’s Algorithm:
Step 8: See here that the edges {7, 8} and {2, 3} both have same weight which are minimum. But 7 is
already part of MST. So we will consider the edge {2, 3} and include that edge and vertex 3 in the MST.

Illustration of Prim’s Algorithm:
Step 9: Only the vertex 4 remains to be included. The minimum weighted edge from the incomplete
MST to 4 is {3, 4}.

Illustration of Prim’s Algorithm:
The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 + 1 + 2 +
4 + 2 + 7 + 9) = 37.

Illustration of Prim’s Algorithm:
Note: If we had selected the edge {1, 2} in the third step then the MST would look like the following.

How to implement Prim’s Algorithm?
Follow the given steps to utilize the Prim’s Algorithm mentioned above for finding MST of a
graph:

•Create a set mstSet that keeps track of
vertices already included in MST.

•Assign a key value to all vertices in the
input graph. Initialize all key values as
INFINITE. Assign the key value as 0 for
the first vertex so that it is picked first.

•While mstSet doesn’t include all vertices
•Pick a vertex u that is not there in mstSet and
has a minimum key value.
•Include u in the mstSet.
•Update the key value of all adjacent vertices
of u. To update the key values, iterate through
all adjacent vertices.

•For every adjacent vertex v, if the weight of
edge u-v is less than the previous key value
of v, update the key value as the weight of u-
v.

Complexity Analysis of Prim’s
Algorithm:
Time Complexity: O(V2), If the input graph is represented using an adjacency list, then the

time complexity of Prim’s algorithm can be reduced to O(E * logV) with the help of a binary

heap. In this implementation, we are always considering the spanning tree to start from the

root of the graph

Auxiliary Space: O(V)

https://www.geeksforgeeks.org/archives/27134

Implementations of Prim’s Algorithm:
Given below are some other implementations of Prim’s Algorithm

•Prim’s Algorithm for Adjacency Matrix Representation – In this article we

have discussed the method of implementing Prim’s Algorithm if the graph is

represented by an adjacency matrix.

•Prim’s Algorithm for Adjacency List Representation – In this article Prim’s

Algorithm implementation is described for graphs represented by an

adjacency list.

•Prim’s Algorithm using Priority Queue: In this article, we have discussed a

time-efficient approach to implement Prim’s algorithm.

https://www.geeksforgeeks.org/prims-algorithm-simple-implementation-for-adjacency-matrix-representation/
https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-greedy-algo-6/
https://www.geeksforgeeks.org/prims-algorithm-using-priority_queue-stl/

Java Implementation (Not
Optimized approach)

// A Java program for Prim's Minimum Spanning Tree (MST)
// algorithm. The program is for adjacency matrix
// representation of the graph

import java.io.*;
import java.lang.*;
import java.util.*;

class MST {

 // Number of vertices in the graph
 private static final int V = 5;

 // A utility function to find the vertex with minimum
 // key value, from the set of vertices not yet included
 // in MST
 int minKey(int key[], Boolean mstSet[])
 {
 // Initialize min value
 int min = Integer.MAX_VALUE, min_index = -1;

 for (int v = 0; v < V; v++)
 if (mstSet[v] == false && key[v] < min) {
 min = key[v];
 min_index = v;
 }

 return min_index;
 }

// A utility function to print the constructed MST
 // stored in parent[]
 void printMST(int parent[], int graph[][])
 {
 System.out.println("Edge \tWeight");
 for (int i = 1; i < V; i++)
 System.out.println(parent[i] + " - " + i + "\t"
 + graph[i][parent[i]]);
 }

 // Function to construct and print MST for a graph
 // represented using adjacency matrix representation
 void primMST(int graph[][])
 {
 // Array to store constructed MST
 int parent[] = new int[V];

 // Key values used to pick minimum weight edge in
 // cut
 int key[] = new int[V];

 // To represent set of vertices included in MST
 Boolean mstSet[] = new Boolean[V];

 // Initialize all keys as INFINITE
 for (int i = 0; i < V; i++) {
 key[i] = Integer.MAX_VALUE;
 mstSet[i] = false;
 }

// Always include first 1st vertex in MST.

 // Make key 0 so that this vertex is
 // picked as first vertex
 key[0] = 0;

 // First node is always root of MST
 parent[0] = -1;

 // The MST will have V vertices
 for (int count = 0; count < V - 1; count++) {

 // Pick the minimum key vertex from the set of
 // vertices not yet included in MST
 int u = minKey(key, mstSet);

 // Add the picked vertex to the MST Set
 mstSet[u] = true;

 // Update key value and parent index of the
 // adjacent vertices of the picked vertex.
 // Consider only those vertices which are not
 // yet included in MST
 for (int v = 0; v < V; v++)

 // graph[u][v] is non zero only for adjacent
 // vertices of m mstSet[v] is false for
 // vertices not yet included in MST Update
 // the key only if graph[u][v] is smaller
 // than key[v]
 if (graph[u][v] != 0 && mstSet[v] == false
 && graph[u][v] < key[v]) {
 parent[v] = u;
 key[v] = graph[u][v];
 }
 }

 // Print the constructed MST
 printMST(parent, graph);
 }

Java Implementation (Not Optimized
approach)
public static void main(String[] args)
 {
 MST t = new MST();
 int graph[][] = new int[][] { { 0, 2, 0, 6, 0 },
 { 2, 0, 3, 8, 5 },
 { 0, 3, 0, 0, 7 },
 { 6, 8, 0, 0, 9 },
 { 0, 5, 7, 9, 0 } };

 // Print the solution
 t.primMST(graph);
 }
}
// This co

Output:

Edge Weight
0 - 1 2
1 - 2 3
0 - 3 6
1 - 4 5

Optimized Implementation using Adjacency List
Representation (of Graph) and Priority Queue
Intuition
1.We transform the adjacency matrix into adjacency list
using ArrayList<ArrayList<Integer>>. in Java, list of list
in Python
and array of vectors in C++.

2.Then we create a Pair class to store the vertex and its
weight .

3.We sort the list on the basis of lowest weight.

4.We create priority queue and push the first vertex and
its weight in the queue

5.Then we just traverse through its edges and store the
least weight in a variable called ans.

6.At last after all the vertex we return the ans.

// A Java program for Prim's Minimum Spanning Tree
(MST)
// algorithm. The program is for adjacency list
// representation of the graph

import java.io.*;
import java.util.*;

// Class to form pair
class Pair implements Comparable<Pair>
{
 int v;
 int wt;
 Pair(int v,int wt)
 {
 this.v=v;
 this.wt=wt;
 }
 public int compareTo(Pair that)
 {
 return this.wt-that.wt;
 }
}

Optimized Implementation using Adjacency
List Representation (of Graph) and Priority
Queue

class GFG {

// Function of spanning tree
static int spanningTree(int V, int E, int edges[][])
 {
 ArrayList<ArrayList<Pair>> adj=new ArrayList<>();
 for(int i=0;i<V;i++)
 {
 adj.add(new ArrayList<Pair>());
 }
 for(int i=0;i<edges.length;i++)
 {
 int u=edges[i][0];
 int v=edges[i][1];
 int wt=edges[i][2];
 adj.get(u).add(new Pair(v,wt));
 adj.get(v).add(new Pair(u,wt));
 }

PriorityQueue<Pair> pq = new PriorityQueue<Pair>();
 pq.add(new Pair(0,0));
 int[] vis=new int[V];
 int s=0;
 while(!pq.isEmpty())
 {
 Pair node=pq.poll();
 int v=node.v;
 int wt=node.wt;
 if(vis[v]==1)
 continue;

 s+=wt;
 vis[v]=1;
 for(Pair it:adj.get(v))
 {
 if(vis[it.v]==0)
 {
 pq.add(new Pair(it.v,it.wt));
 }
 }
 }
 return s;
 }

Optimized Implementation using Adjacency
List Representation (of Graph) and Priority
Queue

// Driver code
 public static void main (String[] args) {
 int graph[][] = new int[][] {{0,1,5},
 {1,2,3},
 {0,2,1}};

 // Function call
 System.out.println(spanningTree(3,3,graph));
 }
}

Output
4

Complexity Analysis of Prim’s Algorithm:

Time Complexity: O(E*log(E)) where E is the
number of edges

Auxiliary Space: O(V^2) where V is the number of
vertex

Kruskal’s Minimum Spanning Tree (MST)
Algorithm
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

How to find MST using Kruskal’s algorithm?

Below are the steps for finding MST using Kruskal’s algorithm:
1.Sort all the edges in a non-decreasing order of their weight.

2.Pick the smallest edge. Check if it forms a cycle with the
spanning tree formed so far. If the cycle is not formed, include this
edge. Else, discard it.

3.Repeat step#2 until there are (V-1) edges in the spanning tree.

Kruskal’s Minimum Spanning Tree (MST)
Algorithm

Note: uses the Union-Find algorithm to detect cycles. So it is recommended reading the following algo

as a prerequisite.

•Union-Find Algorithm | Set 1 (Detect Cycle in a Graph)

•Union-Find Algorithm | Set 2 (Union By Rank and Path Compression)

https://www.geeksforgeeks.org/union-find/
https://www.geeksforgeeks.org/union-find-algorithm-set-2-union-by-rank/

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

The graph contains 9 vertices and 14
edges. So, the minimum spanning tree
formed will be having (9 – 1) = 8 edges.

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 1: Pick edge 7-6. No cycle is formed, include it.

Add edge 7-6 in the
MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 2: Pick edge 8-2. No cycle is formed, include it.

Add edge 8-2 in the MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 3: Pick edge 6-5. No cycle is formed, include it.

Add edge 6-5 in the
MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 4: Pick edge 0-1. No cycle is formed, include it.

Add edge 0-1 in the MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 5: Pick edge 2-5. No cycle is formed, include it.

Add edge 2-5 in the MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 6: Pick edge 8-6. Since including this edge results in the cycle,
discard it. Pick edge 2-3: No cycle is formed, include it.

Add edge 2-3 in the MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 7: Pick edge 7-8. Since including this edge results in the cycle,
discard it. Pick edge 0-7. No cycle is formed, include it.

Add edge 0-7 in MST

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Now pick all edges one by one from the sorted list
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 8: Pick edge 1-2. Since including this edge results in the cycle,
discard it. Pick edge 3-4. No cycle is formed, include it.

Add edge 3-4 in the MST

Note: Since the number of edges included
in the MST equals to (V – 1), so the
algorithm stops here

Kruskal’s Minimum Spanning Tree (MST)
Algorithm - Illustration

Time Complexity: O(E * logE) or O(E * logV)
• Sorting of edges takes O(E * logE) time.

• After sorting, we iterate through all edges and apply the find-union
algorithm. The find and union operations can take at most O(logV) time.

• So overall complexity is O(E * logE + E * logV) time.

• The value of E can be at most O(V2), so O(logV) and O(logE) are the same.
Therefore, the overall time complexity is O(E * logE) or O(E*logV)

Auxiliary Space: O(V + E), where V is the number of vertices and E is the
number of edges in the graph.

Kruskal’s Minimum Spanning Tree (MST)
Algorithm –Java Implementation
// Java program for Kruskal's algorithm

import java.util.ArrayList;
import java.util.Comparator;
import java.util.List;

public class KruskalsMST {

// Defines edge structure
static class Edge {

int src, dest, weight;

public Edge(int src, int dest, int
weight)

{
this.src = src;
this.dest = dest;
this.weight = weight;

}
}

// Defines subset element structure
static class Subset {

int parent, rank;

public Subset(int parent, int
rank)

{
this.parent = parent;
this.rank = rank;

}
}

Kruskal’s Minimum Spanning Tree (MST)
Algorithm –Java Implementation

// Starting point of program execution
public static void main(String[] args)
{

int V = 4;
List<Edge> graphEdges = new ArrayList<Edge>(

List.of(new Edge(0, 1, 10), new Edge(0, 2, 6),
new Edge(0, 3, 5), new Edge(1, 3, 15),
new Edge(2, 3, 4)));

// Sort the edges in non-decreasing order
// (increasing with repetition allowed)
graphEdges.sort(new Comparator<Edge>() {

@Override public int compare(Edge o1, Edge o2)
{

return o1.weight - o2.weight;
}

});

kruskals(V, graphEdges);
}

// Function to find the MST
private static void kruskals(int V,

List<Edge> edges)
{

int j = 0;
int noOfEdges = 0;

// Allocate memory for creating V
subsets

Subset subsets[] = new Subset[V];

// Allocate memory for results
Edge results[] = new Edge[V];

// Create V subsets with single
elements

for (int i = 0; i < V; i++) {
subsets[i] = new Subset(i, 0);

}

Kruskal’s Minimum Spanning Tree (MST)
Algorithm –Java Implementation
// Number of edges to be taken is equal to V-1

while (noOfEdges < V - 1) {

// Pick the smallest edge. And increment
// the index for next iteration
Edge nextEdge = edges.get(j);
int x = findRoot(subsets, nextEdge.src);
int y = findRoot(subsets, nextEdge.dest);

// If including this edge doesn't cause cycle,
// include it in result and increment the index
// of result for next edge
if (x != y) {

results[noOfEdges] = nextEdge;
union(subsets, x, y);
noOfEdges++;

}

j++;
}

// Print the contents of result[] to display the
// built MST
System.out.println(

"Following are the edges of the constructed MST:");
int minCost = 0;
for (int i = 0; i < noOfEdges; i++) {

System.out.println(results[i].src + " -- "
+ results[i].dest + " == "
+ results[i].weight);

minCost += results[i].weight;
}
System.out.println("Total cost of MST: " + minCost);

}

Kruskal’s Minimum Spanning Tree (MST)
Algorithm –Java Implementation

// Function to unite two disjoint sets
private static void union(Subset[] subsets, int x,

int y)
{

int rootX = findRoot(subsets, x);
int rootY = findRoot(subsets, y);

if (subsets[rootY].rank < subsets[rootX].rank)
{

subsets[rootY].parent = rootX;
}
else if (subsets[rootX].rank

< subsets[rootY].rank) {
subsets[rootX].parent = rootY;

}
else {

subsets[rootY].parent = rootX;
subsets[rootX].rank++;

}
}

// Function to find parent of a set
private static int findRoot(Subset[] subsets, int i)
{

if (subsets[i].parent == i)
return subsets[i].parent;

subsets[i].parent
= findRoot(subsets, subsets[i].parent);

return subsets[i].parent;
}

}

Output
Following are the edges in the constructed MST
2 -- 3 == 4
0 -- 3 == 5
0 -- 1 == 10
Minimum Cost Spanning Tree: 19

Acknowledge
PPT has been prepared from the content available on GeekforGeek

	Slide 1: Minimum Spanning Tree (MST)
	Slide 2: Minimum Spanning Tree (MST)
	Slide 3: Properties of a Spanning Tree
	Slide 4: What is Minimum Spanning Tree (MST)
	Slide 5: Properties of Minimum Spanning Tree (MST)
	Slide 6: Possible Multiplicity:
	Slide 7: Cut property:
	Slide 8: Cycle property:
	Slide 9: Uniqueness:
	Slide 10: Minimum Cost Subgraph
	Slide 11: Algorithms for finding Minimum Spanning Tree(MST):
	Slide 12: Prim’s Algorithm for Minimum Spanning Tree (MST)
	Slide 13: Illustration of Prim’s Algorithm:
	Slide 14: Illustration of Prim’s Algorithm:
	Slide 15: Illustration of Prim’s Algorithm:
	Slide 16: Illustration of Prim’s Algorithm:
	Slide 17: Illustration of Prim’s Algorithm:
	Slide 18: Illustration of Prim’s Algorithm:
	Slide 19: Illustration of Prim’s Algorithm:
	Slide 20: Illustration of Prim’s Algorithm:
	Slide 21: Illustration of Prim’s Algorithm:
	Slide 22: Illustration of Prim’s Algorithm:
	Slide 23: Illustration of Prim’s Algorithm:
	Slide 24: Illustration of Prim’s Algorithm:
	Slide 25: How to implement Prim’s Algorithm?
	Slide 26: Complexity Analysis of Prim’s Algorithm:
	Slide 27: Implementations of Prim’s Algorithm:
	Slide 28: Java Implementation (Not Optimized approach)
	Slide 29: Java Implementation (Not Optimized approach)
	Slide 30: Optimized Implementation using Adjacency List Representation (of Graph) and Priority Queue
	Slide 31: Optimized Implementation using Adjacency List Representation (of Graph) and Priority Queue
	Slide 32: Optimized Implementation using Adjacency List Representation (of Graph) and Priority Queue
	Slide 33: Kruskal’s Minimum Spanning Tree (MST) Algorithm
	Slide 34: Kruskal’s Minimum Spanning Tree (MST) Algorithm
	Slide 35: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 36: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 37: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 38: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 39: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 40: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 41: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 42: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 43: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 44: Kruskal’s Minimum Spanning Tree (MST) Algorithm - Illustration
	Slide 45: Kruskal’s Minimum Spanning Tree (MST) Algorithm –Java Implementation
	Slide 46: Kruskal’s Minimum Spanning Tree (MST) Algorithm –Java Implementation
	Slide 47: Kruskal’s Minimum Spanning Tree (MST) Algorithm –Java Implementation
	Slide 48: Kruskal’s Minimum Spanning Tree (MST) Algorithm –Java Implementation
	Slide 49: Acknowledge

