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Minimum Spanning Tree (MST)

What is a Spanning Tree?

A spanning tree is a subset of Graph G, 

such that all the vertices are 

connected using minimum possible 

number of edges. 

Hence, a spanning tree does not have 

cycles and a graph may have more 

than one spanning tree.



Properties of a Spanning Tree

•A Spanning tree does not exist for a 

disconnected graph.

•For a connected graph having N vertices then 

the number of edges in the spanning tree for that 

graph will be N-1.

•A Spanning tree does not have any cycle.

•We can construct a spanning tree for a complete 

graph by removing E-N+1 edges, where E is the 

number of Edges and N is the number of vertices.

•Cayley’s Formula: It states that the number 

of spanning trees in a complete graph with N 

vertices is N^N-2

•For example: N=4, then maximum 

number of spanning tree possible = 4^4-2 

= 16 (shown in the above image).



What is Minimum Spanning Tree (MST)

A minimum spanning tree (MST) is defined as a spanning tree that has the 

minimum weight among all the possible spanning trees.

Necessary conditions for Minimum Spanning Tree:

1.It must not form a cycle i.e, no edge is 

traversed twice.

2.There must be no other spanning tree with 

lesser weight.



Properties of Minimum Spanning Tree (MST)
•A minimum spanning tree connects all the 

vertices in the graph, ensuring that there is 

a path between any pair of nodes.

•An MST is acyclic, meaning it contains no 

cycles. This property ensures that it 

remains a tree and not a graph with loops.

•An MST with V vertices (where V is the 

number of vertices in the original graph) 

will have exactly V – 1 edges, where V is 

the number of vertices.

•An MST is optimal for minimizing 

the total edge weight, but it may 

not necessarily be unique.

•The cut property states that if you 

take any cut (a partition of the 

vertices into two sets) in the 

original graph and consider the 

minimum-weight edge that crosses 

the cut, that edge is part of 

the MST.



Possible Multiplicity:
If G(V, E) is a graph then every spanning 

tree of graph G consists of (V – 1) edges, 

where V is the number of vertices in the 

graph and E is the number of edges in the 

graph. So, (E – V + 1) edges are not a part 

of the spanning tree.

There may be several minimum spanning 

trees of the same weight. If all the edge 

weights of a graph are the same, then 

every spanning tree of that graph is 

minimum.

Each of the spanning trees has the same 
weight equal to 2.



Cut property:

For any cut C of the graph, if the weight of 

an edge E in the cut-set of C is strictly 

smaller than the weights of all other edges 

of the cut-set of C, then this edge belongs 

to all the MSTs of the graph. Below is the 

image to illustrate the same:



Cycle property:

For any cycle C in the graph, if the weight of an edge E of C is larger than the 

individual weights of all other edges of C, then this edge cannot belong to 

an MST. In the above figure, in cycle ABD, edge BD can not be present in any 

minimal spanning tree because it has the largest weight among all the edges in 

the cycle.



Uniqueness:

If each edge has a distinct 

weight then there will be 

only one, i.e., a unique 

minimum spanning tree.



Minimum Cost Subgraph
For all the possible spanning 

trees, the minimum spanning tree 

must have the minimum weight 

possible. However, there may 

exist some more spanning with 

the same weight that of minimum 

spanning tree, and those all may 

also be considered as Minimum 

Spanning tree.

•Minimum Cost Edge: If the minimum cost edge of a 
graph is unique, then this edge is included in any 
MST. For example, in the above figure, the 
edge AB (of the least weight) is always included in 
MST.

•If a new edge is added to the spanning tree then it 
will become cyclic because every spanning tree is 
minimally acyclic. In the above figure, if 
edge AD or BC is added to the resultant MST, then it 
will form a cycle.

•The spanning tree is minimally connected, i.e., if any 
edge is removed from the spanning tree it will 
disconnect the graph. In the above figure, if any edge 
is removed from the resultant MST, then it will 
disconnect the graph.



Algorithms for finding Minimum 
Spanning Tree(MST):

1.Prim’s MST Algorithm

2.Krushkal’s MST Algorithm

3.Boruvka’s Algorithm

4.Reverse-Delete Algorithm

https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/
https://www.geeksforgeeks.org/boruvkas-algorithm-greedy-algo-9/
https://www.geeksforgeeks.org/reverse-delete-algorithm-minimum-spanning-tree/


Prim’s Algorithm for Minimum Spanning 
Tree (MST)
https://www.geeksforgeeks.org/prims-minimum-spanning-tree-mst-greedy-algo-5/

How does Prim’s Algorithm Work? 
The working of Prim’s algorithm can be described by using the following steps:

Step 1: Determine an arbitrary vertex as the starting vertex of the MST.

Step 2: Follow steps 3 to 5 till there are vertices that are not included in 

the MST (known as fringe vertex).

Step 3: Find edges connecting any tree vertex with the fringe vertices.

Step 4: Find the minimum among these edges.

Step 5: Add the chosen edge to the MST if it does not form any cycle.

Step 6: Return the MST and exit



Illustration of Prim’s Algorithm:
Consider the following graph as an example for which we need to find the Minimum Spanning Tree 
(MST).



Illustration of Prim’s Algorithm:
Step 1: Firstly, we select an arbitrary vertex that acts as the starting vertex of the Minimum Spanning Tree. 
Here we have selected vertex 0 as the starting vertex.



Illustration of Prim’s Algorithm:
Step 2: All the edges connecting the incomplete MST and other vertices are the edges {0, 1} and {0, 7}. 
Between these two the edge with minimum weight is {0, 1}. So include the edge and vertex 1 in the 
MST.



Illustration of Prim’s Algorithm:
Step 3: The edges connecting the incomplete MST to other vertices are {0, 7}, {1, 7} and {1, 2}. Among 
these edges the minimum weight is 8 which is of the edges {0, 7} and {1, 2}. Let us here include the edge 
{0, 7} and the vertex 7 in the MST. [We could have also included edge {1, 2} and vertex 2 in the MST].



Illustration of Prim’s Algorithm:
Step 4: The edges that connect the incomplete MST with the fringe vertices are {1, 2}, {7, 6} and {7, 8}. 
Add the edge {7, 6} and the vertex 6 in the MST as it has the least weight (i.e., 1).



Illustration of Prim’s Algorithm:
Step 5: The connecting edges now are {7, 8}, {1, 2}, {6, 8} and {6, 5}. Include edge {6, 5} and vertex 5 in 
the MST as the edge has the minimum weight (i.e., 2) among them.



Illustration of Prim’s Algorithm:
Step 6: Among the current connecting edges, the edge {5, 2} has the minimum weight. So include that 
edge and the vertex 2 in the MST.



Illustration of Prim’s Algorithm:
Step 7: The connecting edges between the incomplete MST and the other edges are {2, 8}, {2, 3}, {5, 
3} and {5, 4}. The edge with minimum weight is edge {2, 8} which has weight 2. So include this edge 
and the vertex 8 in the MST.



Illustration of Prim’s Algorithm:
Step 8: See here that the edges {7, 8} and {2, 3} both have same weight which are minimum. But 7 is 
already part of MST. So we will consider the edge {2, 3} and include that edge and vertex 3 in the MST.



Illustration of Prim’s Algorithm:
Step 9: Only the vertex 4 remains to be included. The minimum weighted edge from the incomplete 
MST to 4 is {3, 4}.



Illustration of Prim’s Algorithm:
The final structure of the MST is as follows and the weight of the edges of the MST is (4 + 8 + 1 + 2 + 
4 + 2 + 7 + 9) = 37.



Illustration of Prim’s Algorithm:
Note: If we had selected the edge {1, 2} in the third step then the MST would look like the following.



How to implement Prim’s Algorithm?
Follow the given steps to utilize the Prim’s Algorithm mentioned above for finding MST of a 
graph:

•Create a set mstSet that keeps track of 
vertices already included in MST.

•Assign a key value to all vertices in the 
input graph. Initialize all key values as 
INFINITE. Assign the key value as 0 for 
the first vertex so that it is picked first.

•While mstSet doesn’t include all vertices
•Pick a vertex u that is not there in mstSet and 
has a minimum key value.
•Include u in the mstSet.
•Update the key value of all adjacent vertices 
of u. To update the key values, iterate through 
all adjacent vertices.

•For every adjacent vertex v, if the weight of 
edge u-v is less than the previous key value 
of v, update the key value as the weight of u-
v.



Complexity Analysis of Prim’s 
Algorithm:
Time Complexity: O(V2), If the input graph is represented using an adjacency list, then the 

time complexity of Prim’s algorithm can be reduced to O(E * logV) with the help of a binary 

heap. In this implementation, we are always considering the spanning tree to start from the 

root of the graph

Auxiliary Space: O(V)

https://www.geeksforgeeks.org/archives/27134


Implementations of Prim’s Algorithm:
Given below are some other implementations of Prim’s Algorithm

•Prim’s Algorithm for Adjacency Matrix Representation – In this article we 

have discussed the method of implementing Prim’s Algorithm if the graph is 

represented by an adjacency matrix.

•Prim’s Algorithm for Adjacency List Representation – In this article Prim’s 

Algorithm implementation is described for graphs represented by an 

adjacency list.

•Prim’s Algorithm using Priority Queue: In this article, we have discussed a 

time-efficient approach to implement Prim’s algorithm.

https://www.geeksforgeeks.org/prims-algorithm-simple-implementation-for-adjacency-matrix-representation/
https://www.geeksforgeeks.org/prims-mst-for-adjacency-list-representation-greedy-algo-6/
https://www.geeksforgeeks.org/prims-algorithm-using-priority_queue-stl/


Java Implementation (Not 
Optimized approach)

// A Java program for Prim's Minimum Spanning Tree (MST)
// algorithm. The program is for adjacency matrix
// representation of the graph

import java.io.*;
import java.lang.*;
import java.util.*;

class MST {

    // Number of vertices in the graph
    private static final int V = 5;

    // A utility function to find the vertex with minimum
    // key value, from the set of vertices not yet included
    // in MST
    int minKey(int key[], Boolean mstSet[])
    {
        // Initialize min value
        int min = Integer.MAX_VALUE, min_index = -1;

        for (int v = 0; v < V; v++)
            if (mstSet[v] == false && key[v] < min) {
                min = key[v];
                min_index = v;
            }

        return min_index;
    }

// A utility function to print the constructed MST
    // stored in parent[]
    void printMST(int parent[], int graph[][])
    {
        System.out.println("Edge \tWeight");
        for (int i = 1; i < V; i++)
            System.out.println(parent[i] + " - " + i + "\t"
                               + graph[i][parent[i]]);
    }

    // Function to construct and print MST for a graph
    // represented using adjacency matrix representation
    void primMST(int graph[][])
    {
        // Array to store constructed MST
        int parent[] = new int[V];

        // Key values used to pick minimum weight edge in
        // cut
        int key[] = new int[V];

        // To represent set of vertices included in MST
        Boolean mstSet[] = new Boolean[V];

        // Initialize all keys as INFINITE
        for (int i = 0; i < V; i++) {
            key[i] = Integer.MAX_VALUE;
            mstSet[i] = false;
        }

// Always include first 1st vertex in MST.

        // Make key 0 so that this vertex is
        // picked as first vertex
        key[0] = 0;
      
        // First node is always root of MST
        parent[0] = -1;

        // The MST will have V vertices
        for (int count = 0; count < V - 1; count++) {
            
            // Pick the minimum key vertex from the set of
            // vertices not yet included in MST
            int u = minKey(key, mstSet);

            // Add the picked vertex to the MST Set
            mstSet[u] = true;

            // Update key value and parent index of the
            // adjacent vertices of the picked vertex.
            // Consider only those vertices which are not
            // yet included in MST
            for (int v = 0; v < V; v++)

                // graph[u][v] is non zero only for adjacent
                // vertices of m mstSet[v] is false for
                // vertices not yet included in MST Update
                // the key only if graph[u][v] is smaller
                // than key[v]
                if (graph[u][v] != 0 && mstSet[v] == false
                    && graph[u][v] < key[v]) {
                    parent[v] = u;
                    key[v] = graph[u][v];
                }
        }

        // Print the constructed MST
        printMST(parent, graph);
    }



Java Implementation (Not Optimized 
approach)
public static void main(String[] args)
    {
        MST t = new MST();
        int graph[][] = new int[][] { { 0, 2, 0, 6, 0 },
                                      { 2, 0, 3, 8, 5 },
                                      { 0, 3, 0, 0, 7 },
                                      { 6, 8, 0, 0, 9 },
                                      { 0, 5, 7, 9, 0 } };

        // Print the solution
        t.primMST(graph);
    }
}
// This co

Output:

Edge     Weight
0 - 1     2 
1 - 2     3 
0 - 3     6 
1 - 4     5 



Optimized Implementation using Adjacency List 
Representation (of Graph) and Priority Queue
Intuition
1.We transform the adjacency matrix into adjacency list 
using ArrayList<ArrayList<Integer>>. in Java, list of list 
in Python 
and array of vectors in C++.

2.Then we create a Pair class to store the vertex and its 
weight .

3.We sort the list on the basis of lowest weight.

4.We create priority queue and push the first vertex and 
its weight in the queue

5.Then we just traverse through its edges and store the 
least weight in a variable called ans.

6.At last after all the vertex we return the ans.

// A Java program for Prim's Minimum Spanning Tree 
(MST)
// algorithm. The program is for adjacency list
// representation of the graph

import java.io.*;
import java.util.*;

// Class to form pair
class Pair implements Comparable<Pair>
{
    int v;
    int wt;
    Pair(int v,int wt)
    {
        this.v=v;
        this.wt=wt;
    }
    public int compareTo(Pair that)
    {
        return this.wt-that.wt;
    }
}



Optimized Implementation using Adjacency 
List Representation (of Graph) and Priority 
Queue

class GFG {

// Function of spanning tree
static int spanningTree(int V, int E, int edges[][])
    {
         ArrayList<ArrayList<Pair>> adj=new ArrayList<>();
         for(int i=0;i<V;i++)
         {
             adj.add(new ArrayList<Pair>());
         }
         for(int i=0;i<edges.length;i++)
         {
             int u=edges[i][0];
             int v=edges[i][1];
             int wt=edges[i][2];
             adj.get(u).add(new Pair(v,wt));
             adj.get(v).add(new Pair(u,wt));
         }

PriorityQueue<Pair> pq = new PriorityQueue<Pair>();
         pq.add(new Pair(0,0));
         int[] vis=new int[V];
         int s=0;
         while(!pq.isEmpty())
         {
             Pair node=pq.poll();
             int v=node.v;
             int wt=node.wt;
             if(vis[v]==1) 
             continue;
             
             s+=wt;
             vis[v]=1;
             for(Pair it:adj.get(v))
             {
                 if(vis[it.v]==0)
                 {
                     pq.add(new Pair(it.v,it.wt));
                 }
             }
         }
         return s;
    }

 



Optimized Implementation using Adjacency 
List Representation (of Graph) and Priority 
Queue

// Driver code
    public static void main (String[] args) {
        int graph[][] = new int[][] {{0,1,5},
                                    {1,2,3},
                                    {0,2,1}};
 
        // Function call
        System.out.println(spanningTree(3,3,graph));
    }
}

Output
4

Complexity Analysis of Prim’s Algorithm:

Time Complexity: O(E*log(E)) where E is the 
number of edges

Auxiliary Space: O(V^2) where V is the number of 
vertex



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm
https://www.geeksforgeeks.org/kruskals-minimum-spanning-tree-algorithm-greedy-algo-2/

How to find MST using Kruskal’s algorithm?

Below are the steps for finding MST using Kruskal’s algorithm:
1.Sort all the edges in a non-decreasing order of their weight.

2.Pick the smallest edge. Check if it forms a cycle with the 
spanning tree formed so far. If the cycle is not formed, include this 
edge. Else, discard it.

3.Repeat step#2 until there are (V-1) edges in the spanning tree.



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm

Note: uses the Union-Find algorithm to detect cycles. So it is recommended reading the following algo 

as a prerequisite.

•Union-Find Algorithm | Set 1 (Detect Cycle in a Graph)

•Union-Find Algorithm | Set 2 (Union By Rank and Path Compression)

https://www.geeksforgeeks.org/union-find/
https://www.geeksforgeeks.org/union-find-algorithm-set-2-union-by-rank/


Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

The graph contains 9 vertices and 14 
edges. So, the minimum spanning tree 
formed will be having (9 – 1) = 8 edges. 

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 1: Pick edge 7-6. No cycle is formed, include it.

Add edge 7-6 in the 
MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 2: Pick edge 8-2. No cycle is formed, include it.

Add edge 8-2 in the MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 3: Pick edge 6-5. No cycle is formed, include it.

Add edge 6-5 in the 
MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 4: Pick edge 0-1. No cycle is formed, include it.

Add edge 0-1 in the MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 5: Pick edge 2-5. No cycle is formed, include it.

Add edge 2-5 in the MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 6: Pick edge 8-6. Since including this edge results in the cycle, 
discard it. Pick edge 2-3: No cycle is formed, include it.

Add edge 2-3 in the MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 7: Pick edge 7-8. Since including this edge results in the cycle, 
discard it. Pick edge 0-7. No cycle is formed, include it.

Add edge 0-7 in MST



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Now pick all edges one by one from the sorted list 
of edges

After sorting:

Weight Source Destination
1 7 6
2 8 2
2 6 5
4 0 1
4 2 5
6 8 6
7 2 3
7 7 8
8 0 7
8 1 2
9 3 4
10 5 4
11 1 7
14 3 5

Step 8: Pick edge 1-2. Since including this edge results in the cycle, 
discard it. Pick edge 3-4. No cycle is formed, include it.

Add edge 3-4 in the MST

Note: Since the number of edges included 
in the MST equals to (V – 1), so the 
algorithm stops here



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm - Illustration

Time Complexity: O(E * logE) or O(E * logV)
• Sorting of edges takes O(E * logE) time.

• After sorting, we iterate through all edges and apply the find-union 
algorithm. The find and union operations can take at most O(logV) time.

• So overall complexity is O(E * logE + E * logV) time.

• The value of E can be at most O(V2), so O(logV) and O(logE) are the same. 
Therefore, the overall time complexity is O(E * logE) or O(E*logV)

Auxiliary Space: O(V + E), where V is the number of vertices and E is the 
number of edges in the graph.



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm –Java Implementation 
// Java program for Kruskal's algorithm 

import java.util.ArrayList; 
import java.util.Comparator; 
import java.util.List; 

public class KruskalsMST { 

// Defines edge structure 
static class Edge { 

int src, dest, weight; 

public Edge(int src, int dest, int 
weight) 

{ 
this.src = src; 
this.dest = dest; 
this.weight = weight; 

} 
} 

// Defines subset element structure 
static class Subset { 

int parent, rank; 

public Subset(int parent, int 
rank) 

{ 
this.parent = parent; 
this.rank = rank; 

} 
} 



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm –Java Implementation 

// Starting point of program execution 
public static void main(String[] args) 
{ 

int V = 4; 
List<Edge> graphEdges = new ArrayList<Edge>( 

List.of(new Edge(0, 1, 10), new Edge(0, 2, 6), 
new Edge(0, 3, 5), new Edge(1, 3, 15), 
new Edge(2, 3, 4))); 

// Sort the edges in non-decreasing order 
// (increasing with repetition allowed) 
graphEdges.sort(new Comparator<Edge>() { 

@Override public int compare(Edge o1, Edge o2) 
{ 

return o1.weight - o2.weight; 
} 

}); 

kruskals(V, graphEdges); 
} 

// Function to find the MST 
private static void kruskals(int V, 

List<Edge> edges) 
{ 

int j = 0; 
int noOfEdges = 0; 

// Allocate memory for creating V 
subsets 

Subset subsets[] = new Subset[V]; 

// Allocate memory for results 
Edge results[] = new Edge[V]; 

// Create V subsets with single 
elements 

for (int i = 0; i < V; i++) { 
subsets[i] = new Subset(i, 0); 

} 



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm –Java Implementation 
// Number of edges to be taken is equal to V-1 

while (noOfEdges < V - 1) { 

// Pick the smallest edge. And increment 
// the index for next iteration 
Edge nextEdge = edges.get(j); 
int x = findRoot(subsets, nextEdge.src); 
int y = findRoot(subsets, nextEdge.dest); 

// If including this edge doesn't cause cycle, 
// include it in result and increment the index 
// of result for next edge 
if (x != y) { 

results[noOfEdges] = nextEdge; 
union(subsets, x, y); 
noOfEdges++; 

} 

j++; 
} 

// Print the contents of result[] to display the 
// built MST 
System.out.println( 

"Following are the edges of the constructed MST:"); 
int minCost = 0; 
for (int i = 0; i < noOfEdges; i++) { 

System.out.println(results[i].src + " -- "
+ results[i].dest + " == "
+ results[i].weight); 

minCost += results[i].weight; 
} 
System.out.println("Total cost of MST: " + minCost); 

} 



Kruskal’s Minimum Spanning Tree (MST) 
Algorithm –Java Implementation 

// Function to unite two disjoint sets 
private static void union(Subset[] subsets, int x, 

int y) 
{ 

int rootX = findRoot(subsets, x); 
int rootY = findRoot(subsets, y); 

if (subsets[rootY].rank < subsets[rootX].rank) 
{ 

subsets[rootY].parent = rootX; 
} 
else if (subsets[rootX].rank 

< subsets[rootY].rank) { 
subsets[rootX].parent = rootY; 

} 
else { 

subsets[rootY].parent = rootX; 
subsets[rootX].rank++; 

} 
} 

// Function to find parent of a set 
private static int findRoot(Subset[] subsets, int i) 
{ 

if (subsets[i].parent == i) 
return subsets[i].parent; 

subsets[i].parent 
= findRoot(subsets, subsets[i].parent); 

return subsets[i].parent; 
} 

} 

Output
Following are the edges in the constructed MST
2 -- 3 == 4
0 -- 3 == 5
0 -- 1 == 10
Minimum Cost Spanning Tree: 19



Acknowledge
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