
Queue and Its Applications

Dr. GC Jana

Assistant Professor

Today’s discussion…

Queue

*Basic principles

*Operation of queue

*Queue using Array

*Queue using Linked List

*Applications of queue

Basic Idea

• Queue is an abstract data structure, somewhat similar to Stacks. Unlike stacks, a queue

is open at both its ends. One end is always used to insert data (enqueue) and the other is

used to remove data (dequeue). Works on FIFO-first in first out.

Queue Representation

• As in stacks, a queue can also be implemented using Arrays, Linked-lists, Pointers and

Structures.

QUEUE

enqueue

create

dequeue

size

isempty

void enqueue (queue *q, int element);

 /* Insert an element in the queue */

 int dequeue (queue *q);
 /* Remove an element from the queue */

 queue *create();
 /* Create a new queue */

 bool isempty (queue *q);
 /* Check if queue is empty */

 int size (queue *q);
 /* Return the no. of elements in queue */

Assumption: queue contains integer elements!

QUEUE: First-In-First-Out (FIFO)

#include <iostream>

using namespace std;

class Queue

{

public:

 int n=6;

 int ar[n];

 void create();

 void enqueue(int);

 int dequeue();

};

void create()

{

 int front = - 1;

 int rear = - 1;
}

void enqueue(int item)

{

 // checking overflow condition

 if (rear == n - 1)

 {

 cout<<"Overflow!"<<endl;

 return;

 }

 else

 {

 // front and rear both are at -1 then

 // set front and rear at 0 otherwise increment rear

 if (front == - 1 && rear==-1)

 {

 front = 0; rear=0;

 }

 else

 rear++;

 //inserting element at rear

 ar[rear] = item;

 cout<<"Element inserted"<<endl;

 }

}

void dequeue()

{

 if (front == - 1 || front > rear)

 {

 cout<<"Underflow!";

 return ;

 }

 else

 {

 int item=ar[front];
 cout<<"Element deleted from queue is : "<< item <<endl;

 // if front and rear reach at end then initialize it at -1

 if(front == rear)

 {

 front = -1;

 rear = -1;

 }

 else

 front++;

 }
}

Problem with Array Implementation

• The size of the queue depends on the number and order of enqueue and dequeue.

• It may be situation where memory is available but enqueue is not possible.

front rear
rear

ENQUEUE

front

DEQUEUE

Effective queuing storage area of array gets reduced.

Use of circular array indexing

0 N

Circular Queue using Arrays
Array implementation Of Queue : For implementing a

queue, we need to keep track of two indices - front and

rear. We enqueue an item at the rear and dequeue an item

from the front. If we simply increment front and rear indices,

then there may be problems, the front may reach the end of

the array. The solution to this problem is to increase front and

rear in a circular manner.

Consider that an Array of size N is taken to implement a

queue. Initially, the size of the queue will be zero(0). The total

capacity of the queue will be the size of the array i.e. N. Now

initially, the index front will be equal to 0, and rear will be

equal to N-1.

Every time an item is inserted, so the index rear will increment

by one, hence increment it as: rear = (rear + 1)%N and

everytime an item is removed, so the front index will shift to

right by 1 place, hence increment it as: front = (front + 1)%N

#include <iostream>

using namespace std;

class Queue

{

public:

 int n=6;

 int ar[n];

 void create();

 void enqueue(int);

 int dequeue();

};

void create()

{

 int front = - 1;

 int rear = - 1;
}

void enqueue(int item)

{

 // checking overflow condition

 if (rear == n - 1)

 {

 cout<<"Overflow!"<<endl;

 return;

 }

 else

 {

 // front and rear both are at -1 then

 // set front and rear at 0 otherwise increment rear

 if (front == - 1 && rear==-1)

 {

 front = 0; rear=0;

 }

 else

 rear=(rear+1)%n;

 //inserting element at rear

 ar[rear] = item;

 cout<<"Element inserted"<<endl;

 }

}

void dequeue()

{

 if (front == - 1 || front > rear)

 {

 cout<<"Underflow!";

 return ;

 }

 else

 {

 int item=ar[front];
 cout<<"Element deleted from queue is : "<< item <<endl;

 // if front and rear reach at end then initialize it at -1

 if(front == rear)

 {

 front = -1;

 rear = -1;

 }

 else

 front=(front+1)%n;

 }
}

Queue using Linked List

Front

Rear

DELETION INSERTION

Basic Idea

• Create a linked list to which items would be added to one end

and deleted from the other end.

• Two pointers will be maintained:

• One pointing to the beginning of the list (point from where

elements will be deleted).

• Another pointing to the end of the list (point where new

elements will be inserted).

front rear

ENQUEUE

Queue: Linked List Structure

front rear

DEQUEUE

Queue: Linked List Structure

Example :Queue using Linked List

struct QueueNode{

 int data;

 QueueNode *next;

 QueueNode(int a){

 data = a;

 next = NULL;

 }

};

struct MyQueue {

 QueueNode *front;

 QueueNode *rear;

 void enqueue(int);

 int dequeue();

 MyQueue() {

 front = rear = NULL;

 }

};

void MyQueue:: enqueue(int x){

 QueueNode *qn=new QueueNode(x);

if (front==NULL)

 front=rear=qn;

 else

 {

 rear->next=qn;

 rear=qn;

 }

}

int MyQueue :: dequeue(){

 if (front==NULL)

 return -1;

 QueueNode *temp=front;

 front=front->next;

 if (front==NULL)

 rear=NULL;

 return temp->data;

}

Applications of Queues
• Waiting lists

• Access to shared resources (e.g., printer)

• Auxiliary data structure for algorithms

• Data items to transfer through a Router on a network,

• To manage the ready queue, waiting queue, etc. for the execution of a task in CPU

scheduling

• Job sequencing through an operating system,

• Priority management of the different tasks

• Manage Time-sharing system.

• Buffering data in I/O systems

• Producer-consumer problem

• Thread synchronization

• Graph Applications: BFS, Dijkstra's algorithm

• Traffic management

Method Definition

queue::empty()
Returns whether the queue is empty. It return true if the

queue is empty otherwise returns false.

queue::size() Returns the size of the queue.

queue::swap()

Exchange the contents of two queues but the queues

must be of the same data type, although sizes may

differ.

queue::emplace()
Insert a new element into the queue container, the

new element is added to the end of the queue.

queue::front() Returns a reference to the first element of the queue.

queue::back() Returns a reference to the last element of the queue.

queue::push(g) Adds the element ‘g’ at the end of the queue.

queue::pop() Deletes the first element of the queue.

Queue in C++ STL

https://www.geeksforgeeks.org/queueempty-queuesize-c-stl/
https://www.geeksforgeeks.org/queueempty-queuesize-c-stl/
https://www.geeksforgeeks.org/queue-swap-cpp-stl/
https://www.geeksforgeeks.org/queueemplace-c-stl/
https://www.geeksforgeeks.org/queuefront-queueback-c-stl/
https://www.geeksforgeeks.org/queuefront-queueback-c-stl/
https://www.geeksforgeeks.org/queue-push-and-queue-pop-in-cpp-stl/
https://www.geeksforgeeks.org/queue-push-and-queue-pop-in-cpp-stl/

Queue in C++ STL

 Methods

// Print the queue

void print_queue(queue<int> q){

 queue<int> temp = q;

 while (!temp.empty()) {

 cout << temp.front()<<" ";

 temp.pop();

 }

 cout << '\n';

}

 int main()

 {

 queue<int> q1;

 q1.push(1);

 q1.push(2);

 q1.push(3);

 cout << "The first queue is : ";

 print_queue(q1);

queue<int> q2;

 q2.push(4);
 q2.push(5);

 q2.push(6);

 cout << "The second queue is : ";
 print_queue(q2);

 q1.swap(q2);

 cout << "After swapping, the first queue is : ";

 print_queue(q1);

 cout << "After swapping the second queue is : ";

 print_queue(q2);

 cout<<q1.empty(); //returns false since q1 is not
empty

 return 0;

}

DQueue in C++

• Deque Data Structure

• Deque or Double Ended Queue is a generalized version of Queue data structure that

allows insert and delete at both ends.

https://www.geeksforgeeks.org/queue-set-1introduction-and-array-implementation/

DQueue in C++ STL

 Operations on Deque: Mainly the following four basic operations are performed on queue:

insertFront(): Adds an item at the front of Deque.

insertLast(): Adds an item at the rear of Deque.

deleteFront(): Deletes an item from the front of Deque.

deleteLast(): Deletes an item from the rear of Deque.

 In addition to the above operations, the following operations are also supported.

getFront(): Gets the front item from the queue.

getRear(): Gets the last item from queue.

isEmpty(): Checks whether Deque is empty or not.

isFull(): Checks whether Deque is full or not.

 Some Practical Applications of Deque:

 Applied as both stack and queue, as it supports both operations.

 Storing a web browser’s history.

 Storing a software application’s list of undo operations.

 Job scheduling algorithm

DQueue in C++ STL

DQueue in C++ STL

DQueue in C++ STL

PriorityQueue in C++ STL

A C++ priority queue is a type of container adapter, specifically designed such that the

first element of the queue is either the greatest or the smallest of all elements in the

queue, and elements are in non-increasing or non-decreasing order (hence we can see

that each element of the queue has a priority {fixed order}).

In C++ STL, the top element is always the greatest by default. We can also change it to

the smallest element at the top. Priority queues are built on the top of the max heap

and use an array or vector as an internal structure. In simple terms, STL Priority Queue is

the implementation of Heap Data Structure.

Syntax:

priority_queue<int> pq; //MaxHeap

priority_queue <int, vector<int>, greater<int>> gq;
 //MinHeap

https://www.geeksforgeeks.org/containers-cpp-stl/
https://www.geeksforgeeks.org/heap-data-structure/

PriorityQueue in C++ STL#include <iostream>

#include <queue>

using namespace std;

// driver code

int main()

{

 int arr[6] = { 10, 2, 4, 8, 6, 9 };
 // defining priority queue

 priority_queue<int> pq;

 // printing array

 cout << "Array: ";

 for (auto i : arr) {
 cout << i << ' ';

 }

 cout << endl;

 // pushing array sequentially one by one

 for (int i = 0; i < 6; i++) {
 pq.push(arr[i]);

 }

// printing priority queue

 cout << "Priority Queue: ";

 while (!pq.empty()) {
 cout << pq.top() << ' ';

 pq.pop();

 }

 return 0;

}

Output
Array: 10 2 4 8 6 9
Priority Queue: 10 9 8 6 4 2

PriorityQueue in C++ STL
#include <iostream>

#include <queue>

using namespace std;

void showpq(

 priority_queue<int, vector<int>, greater<int> > g)

{

 while (!g.empty()) {

 cout << ' ' << g.top();

 g.pop();

 }

 cout << '\n';

}

void showArray(int* arr, int n)

{

 for (int i = 0; i < n; i++) {

 cout << arr[i] << ' ';

 }

 cout << endl;

}

// Driver Code

int main()

{

 int arr[6] = { 10, 2, 4, 8, 6, 9 };

 priority_queue<int, vector<int>,

greater<int> > gquiz(arr, arr + 6);

 cout << "Array: ";

 showArray(arr, 6);

 cout << "Priority Queue : ";

 showpq(gquiz);

 return 0;

}

Output
Array: 10 2 4 8 6 9
Priority Queue : 2 4 6 8 9 10

PriorityQueue in C++ STL

Any question?

	Slide 1
	Slide 2: Today’s discussion…
	Slide 3: Basic Idea
	Slide 4: Queue Representation
	Slide 5
	Slide 6
	Slide 7: #include <iostream> using namespace std; class Queue { public: int n=6; int ar[n]; void create(); void enqueue(int); int dequeue(); }; void create() { int front = - 1; int rear = - 1; }
	Slide 8: void dequeue() { if (front == - 1 || front > rear) { cout<<"Underflow!"; return ; } else { int item=ar[front]; cout<<"Element deleted from queue is : "<< item <<endl; // if front and rear reach at end then initialize it
	Slide 9: Problem with Array Implementation
	Slide 10: Circular Queue using Arrays
	Slide 11: #include <iostream> using namespace std; class Queue { public: int n=6; int ar[n]; void create(); void enqueue(int); int dequeue(); }; void create() { int front = - 1; int rear = - 1; }
	Slide 12: void dequeue() { if (front == - 1 || front > rear) { cout<<"Underflow!"; return ; } else { int item=ar[front]; cout<<"Element deleted from queue is : "<< item <<endl; // if front and rear reach at end then initialize it
	Slide 13: Queue using Linked List
	Slide 14
	Slide 15: Queue: Linked List Structure
	Slide 16: Queue: Linked List Structure
	Slide 17: Example :Queue using Linked List
	Slide 18: Applications of Queues
	Slide 19
	Slide 20: Queue in C++ STL
	Slide 21
	Slide 22: DQueue in C++
	Slide 23: DQueue in C++ STL
	Slide 24: DQueue in C++ STL
	Slide 25: DQueue in C++ STL
	Slide 26: DQueue in C++ STL
	Slide 27: PriorityQueue in C++ STL
	Slide 28: PriorityQueue in C++ STL
	Slide 29: PriorityQueue in C++ STL
	Slide 30: PriorityQueue in C++ STL
	Slide 31
	Slide 32

