
Linked List

Dr. GC Jana

Definition of a Linked List

1 A Sequential Collection

A linked list is a linear data structure comprised of nodes that are connected through

pointers, forming a chain-like sequence.

2 Flexible and Dynamic

Unlike arrays, linked lists can grow or shrink dynamically by adding or removing nodes

at any position.

3 Elementary Components

A node typically contains two key elements: the data it stores and a reference to the

next node in the list.

Advantages of Using a Linked List

Efficient Insertions and Deletions

Linked lists enable efficient insertion and

deletion operations by simply adjusting the

pointers, without requiring data movement.

Dynamic Size

The ability to grow or shrink dynamically

makes linked lists ideal for scenarios where

the number of elements changes frequently.

Memory Allocation Flexibility

Nodes in a linked list can be scattered

throughout the memory, allowing for flexible

memory allocation and efficient use of space.

Implementation Simplicity

Implementing and manipulating linked lists is

relatively straightforward, making them

popular in programming.

Advantages of Using a Linked List

Comparison with Other Data Structures

Arrays

Linked lists offer dynamic

size and efficient

insertions/deletions,

whereas arrays provide

faster random access and

contiguous memory.

Stacks and Queues

Stacks and queues can be

implemented using linked

lists, providing dynamic

behavior and efficient

FIFO/LIFO operations.

Trees and Graphs

Linked lists serve as the

foundation for more

complex data structures

like trees and graphs,

facilitating node linkage.

Types of Linked Lists

Singly Linked List

A basic linked list where each node has

a reference to the next node, forming a

unidirectional chain.

Doubly Linked List

Similar to a singly linked list, but each

node also has a reference to the

previous node, enabling bidirectional

traversal.

Types of Linked Lists

Circular Linked List

In this variation, the last node of the list

points back to the first node, creating a

circular structure.

Types of Linked Lists

Operations on a Linked List

1 Traversal

Iterate through the linked list to access

and process each individual node or its

data.2Insertion

Insert new nodes at the beginning, end, or

any desired position in the linked list.

3 Deletion

Remove nodes from the linked list,

adjusting pointers to ensure proper

connections.4Search

Find specific data within the linked list by

traversing the nodes and comparing their

values. 5 Reversal

Reverse the order of the nodes in the

linked list, altering the sequencing from

head to tail.

struct Structure_Name{

Data_type info;

struct Structure_Name * link;

};

void create/append(struct node **q,int num){

struct node *temp,*r;

if(*q==NULL){

temp=(struct node*)malloc(sizeof(struct node));

temp->link=NULL;

temp->data=num;

*q=temp;

}

else{

temp=*q;

while(temp->link!=NULL)

temp=temp->link;

r =(struct node*) malloc(sizeof(struct node));

r->data=num;

r->link=NULL;

temp->link=r;

}

}

void display(struct node **q){

struct node *temp;

temp=*q;

while(temp!=NULL){

printf("%d → ",temp->data);

temp=temp->link;

}

}

void addatbeg(struct node **q,int num){

struct node *temp;

temp=(struct node*)malloc(sizeof(struct

node));

temp->link=*q;

temp->data=num;

*q=temp;

}

Singly Linked List: Operations

void addafter(struct node **q,int loc, int num){

struct node *temp,*r;

int i;

temp=*q;

for(i=0;i<loc-1;i++){

temp=temp->link;

if(temp==NULL){

printf("no. of nodes are less than the position

to insert a new node");

return;

}

}

r=(struct node*)malloc(sizeof(struct node));

r->data=num;

r->link=temp->link;

temp->link=r;

}

void delete(struct node **q,int num){

struct node *temp,*pre;

temp=*q;

while(temp!=NULL){

if(temp->data==num){

if(temp==*q)

*q=temp->link;

else

pre->link=temp->link;

free(temp);

return;

}

else{

pre=temp;

temp=temp->link;

}

}

printf("element %d not found",num);

}

Singly Linked List: Operations

Singly Linked List: Operations

Sorting

void merge(struct node *p, struct node *q, struct

node **s){

struct node *z;

z=NULL;

if(p==NULL && q==NULL)

return;

while(p!=NULL && q!=NULL){

if(*s==NULL){

*s=malloc(sizeof(struct node));

z=*s;

}

else{

z->link=malloc(sizeof(struct node));

z=z->link;

}

if(p->data<q->data){

z->data=p->data; p=p->link;

}

else if(q->data<p->data){

z->data=q->data; q=q->link;

}

else{

z->data=p->data; p=p->link; q=q->link;

}

}

while(p!=NULL){

z->link=malloc(sizeof(struct node));

z=z->link;

z->data=p->data;

p=p->link;

}

while(q!=NULL){

z->link=malloc(sizeof(struct node));

z=z->link;

z->data=q->data;

q=q->link;

}

z->link=NULL;

}

Singly Linked List: Operations

Polynomial Representation Using Linked List

Polynomial 10x^4 + 5x^2 + 25 is represented as following:void polyadditon (struct node *p, struct node *q, struct node

**s){

struct node * temp;

if (q == NULL && p ==NULL){

return;

}

while (p ! = NULL && q! = NULL){

if (*s == NULL){

*s = malloc (size of (struct node));

temp = * s;}

else{

temp → link = malloc (size of (struct node));

temp = temp → link;

}

if (p → exp < q → exp){

temp → coef = q → coef;

temp → e × p = q → e × p;

q = q → link;}

else {

if (p → exp > q → exp){

temp → coef = p → coef;

temp → exp = p → exp;

p = p → link;

}

else {

temp → coef = p + coef + q → coef;

temp → exp = q → exp;

q = q → link ;

p = p → link;

}}}

while (p ! = NULL){

if (* s == NULL)

* s=malloc(sizeof(struct node)); temp = *s;

else {

temp → link = malloc (size of (struct

node)); temp = temp → link;

}

temp → coef = p → coef;

temp → exp = p → exp;

p = p → link; }

while (q ! = NULL){

if (*s == NULL){

*s = malloc (sizeof(struct node));

temp = *s ;

}

else {

temp →link=malloc(sizeof(struct

node));

}

}

}

Common Problems and Challenges with Linked Lists

1 Memory Overhead

Each node in a linked list

requires additional

memory for the data

payload and the

next/previous node

pointers.

2 Traversal Complexity

Locating a specific node

in a linked list requires

iterating through the

nodes from the

beginning until the

desired node is found.

3 Unsuitable for
Random Access

Unlike arrays, linked lists

do not support direct

access to elements

based on their indices,

slowing down element

retrieval.

1. Dynamic Memory Allocation:

2. Implementation of Stacks, Queues, Trees, and Graphs:

3. Symbol Table in Compilers:
• Symbol tables store information about variables, functions, and other symbols in a program, and linked lists

facilitate efficient management and retrieval of this information.

4. Dynamic Memory Management in Operating Systems:
• In operating systems, linked lists are commonly used to manage free blocks of memory.
• Memory allocation and deallocation can be efficiently handled by maintaining linked lists of free memory

blocks.

5. Music Player Playlist:
• Linked lists are suitable for representing playlists in music players.
• Each node in the linked list represents a song, and the links between nodes define the order of the playlist.

6. Hash Table Chaining:
• Linked lists are used in combination with hash tables for collision resolution through chaining.
• In case of a hash collision, elements with the same hash value can be stored in a linked list attached to the

corresponding hash table index.

7. Polynomial Representation:
• Linked lists can be used to represent polynomials efficiently.
• Each node represents a term in the polynomial, with the links indicating the degree of the term.

8. Job Scheduling in Operating Systems:
• Linked lists are employed in job scheduling algorithms in operating systems.
• Each node represents a job, and the links define the scheduling order.

A
p

p
lic

at
io

n
s

o
f

lin
ke

d
 li

st

Example: Write a function to get the intersection point of two Linked Lists

There are two singly linked lists in a system. By some programming error, the end node of one of the linked lists got
linked to the second list, forming an inverted Y-shaped list. Write a program to get the point where two linked lists
merge.

Approach-1
• Use 2 nested for loops.
• The outer loop will be for each node of the

1st list and the inner loop will be for the
2nd list.

• In the inner loop, check if any of the nodes
of the 2nd list is the same as the current
node of the first linked list.

The time complexity of this method will be
O(M * N) where M and N are the numbers of
nodes in two lists.
Space Complexity = O(1)

Example: Write a function to get the intersection point of two Linked Lists

There are two singly linked lists in a system. By some programming error, the end node of one of the linked lists got
linked to the second list, forming an inverted Y-shaped list. Write a program to get the point where two linked lists
merge.

Approach-2
• Create an empty hash set.
• Traverse the first linked list and insert

all nodes’ addresses in the hash set.
• Traverse the second list. For every node

check if it is present in the hash set. If
we find a node in the hash set, return
the node.

The time complexity of this method will
be O(N) where M and N are the numbers
of nodes in two lists.
Space Complexity = O(M), Let N > M

Example: Write a function to get the intersection point of two Linked Lists

There are two singly linked lists in a system. By some programming error, the end node of one of the linked lists got
linked to the second list, forming an inverted Y-shaped list. Write a program to get the point where two linked lists
merge.

Approach-3
• Get the count of the nodes in the both lists, let

the count be c1, c2.
• Get the difference of counts d = abs(c1 – c2)
• Now traverse the bigger list from the first

node to d nodes so that from here onwards
both the lists have an equal no of nodes

• Then traverse both lists in parallel till a
common node encountered.

Time Complexity: O(M+N)
Auxiliary Space: O(1)

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20: Thank you!

