
Advanced Data
Structures and

Algorithms (R1UC503B)
Time & Space

Complexity

Dr. Gopal Chandra Jana

Assistant Professor, SCSE

Galgotias University

Understanding Time and Space Complexi ty

The goal of the analysis of algorithms is to compare algorithms (or
solutions) mainly in terms of running time and/or memory but also in
terms of other factors (e.g., developer effort, scalability, Adaptability, etc.)

• Efficient algorithms save resources (time and memory)

Running Time Analysis?
It is the process of determining how processing time increases as the
size of the problem (input size) increases. Input size is the number of
elements in the input, and depending on the problem type, the input
may be of different types.

The following are the common types of inputs.
• Size of an array
• Polynomial degree
• Number of elements in a matrix
• Number of bits in the binary representation of the input
• Vertices and edges in a graph.

How to Compare Algorithms?

A few objective measures to be considered while comparing algorithms:

• Execution times? Not a good measure as execution times are specific to a
particular computer.

• Number of statements executed? Not a good measure, since the number
of statements varies with the programming language as well as the style
of the individual programmer.

• Feasible solution? Let us assume that we express the running time of a
given algorithm as a function of the input size n (i.e., f(n)) and compare
these different functions corresponding to running times. This kind of
comparison is independent of machine time, programming style, etc.

Understanding Time and Space Complexi ty

Understanding Time and Space Complexi ty

There are three types of analysis:
• Worst case

○ Defines the input for which the algorithm takes a long time
(slowest time to complete).

• Best case
○ Defines the input for which the algorithm takes the least time

(fastest time to complete).

• Average case
○ Provides a prediction about the running time of the algorithm.
○ Run the algorithm many times, using many different inputs that

come from some distribution that generates these inputs, compute
the total running time (by adding the individual times), and divide
by the number of trials.

○ Assumes that the input is random.

General rules to help us determine the running time of an algorithm.

Loops:

for(i=1; i<=n; i++)
break; //constant time

Total Time = c 1 → O(1)

Loops:

for(i=1; i<=n; i++) //Executes n times
sum=sum+2; //constant time

Total Time = c x n → O(n)

General rules to help us determine the running time of an algorithm.

Nested Loops:

for(i=1; i<=n; i++) //Outer loop Executes n times
for(j=1; j<=n; j++) //Executes n times

sum=sum+2; //const time

Total Time = c x n x n → O(n2)

General rules to help us determine the running time of an algorithm.

Consecutive Statements:

K = k-1; //Constant time
for(i=1; i<=n; i++) //Executes n times

sum=sum+2; //constant time

for(i=1; i<=n; i++) //Outer loop Executes n times
for(j=1; j<=n; j++) //Executes n times

m=m-2; //constant time

Total Time = c1 + c2 x n + c3 x n x n → O(n2)

General rules to help us determine the running time of an algorithm.

If-then-else:

If(length()==0) //constant time
return false; //constant time

else
{
for(int n=0; n<length(); n++) //Executes n times

if(!Arr[n].equals(Arr2[n])) //constant time
return false; //constant time

}
Total Time = c1+ c2 + (c3+c4) x n → O(n)

General rules to help us determine the running time of an algorithm.

Logarithmic:

for(i=1; i<=n;)
i=i*2; 2,4,8,…→ 2n = m

Total Time = O(log m)

Logarithmic:

for(i=n; i>=1;)
i=i/2;

Total Time = O(log m)

General rules to help us determine the running time of an algorithm.

Nested Loops:

for(i=1; i<=n; i++) //Outer loop Executes n
times

for(j=1; j<=n; j=j*2) //Executes log(n) times
Print(); //const time

Total Time = c x n x log(n) → O(nlog(n))
Nested Loops:

for(i=1; i<=n; i++) //Outer loop Executes n
times

for(j=1; j<=n; j=j++) //Executes n times
if (j%2==1)

break; //const time

Total Time = c x n x 1 → O(n)

General rules to help us determine the running time of an algorithm.

Square Root:

for(i=1; i x i<=n; i++)
print();

Total Time = O(sqrt(n))

Cube Root:

for(i=1; i x i x i<=n; i++)
print();

Total Time = O(CubeRoot(n))

General rules to help us determine the running time of an algorithm.

Multiple Loops:

for(j=1; j<N; j++) //Executes N times
print(); //const time

for(i=1; i<M; i++) //Executes M times
print(); //const time

Total Time = c x N x M → O(N+M)
Space Complexity = O(1)

Space Complexity
The term Space Complexity is misused for Auxiliary Space at many places.

Following are the correct definitions of Auxiliary Space and Space Complexity.

Auxiliary Space is the extra space or temporary space used by an algorithm.

Space Complexity of an algorithm is the total space taken by the algorithm with
respect to the input size. Space complexity includes both Auxiliary space and
space used by input.

For example, if we want to compare standard sorting algorithms on the basis of
space, then Auxiliary Space would be a better criterion than Space Complexity.
Merge Sort uses O(n) auxiliary space, Insertion sort, and Heap Sort use O(1)
auxiliary space. The space complexity of all these sorting algorithms is O(n)
though.

Space complexity is a parallel concept to time complexity.
If we need to create an array of size n, this will require O(n) space.
If we create a two-dimensional array of size n*n, this will require O(n2) space.

Set of Problems :

for(j=1; j<=n; j++) // j<=n
print();

Time Complexity = O(?)

for(j=1; j<n; j++) // j<n
print();

Time Complexity = O(?)

If (x%2==0)
print();

Time Complexity = O(?)

General rules to help us determine the running time of an algorithm.

for(j=1; j<=n; j=j+2) // j=j+2
print();

Time Complexity = O(?)

for(j=1; j * j * j <= n; j++) // j *
j * j <=n

print();

Time Complexity = O(?)for(j=1; j <= n; j=j * 3) // j =j*3
print();

Time Complexity = O(?)

General rules to help us determine the running time of an algorithm.

for(j=n; j>=1; j=j/x) // j=j/x
print();

Time Complexity = O(?)

for(j=1; j <= n; j++)
for(i=1; i<=j; i++)

print();
Time Complexity = O(?)

for(j=1; j <= n; j++)
for(i=1; i<=n; i++)

if (i%2==0)
break;

Time Complexity = O(?)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

