
Arrays:

1) Static vs. dynamic arrays.

2) Find the Maximum and Minimum Elements in an Array,

3) Reverse an Array,

4) Find the Kth Smallest/Largest Element in an Array.

Static Vs. Dynamic Arrays

By Dr. GC Jana

1) Static Vs. Dynamic Arrays

Static Arrays

Definition:

• Static arrays are data structures with a fixed size. Once an array is created, its size cannot be

altered. The memory for the array is allocated at compile time.

Key Features:

• Fixed Size: The size of the array is set during its declaration and cannot be changed.

• Memory Allocation: Memory is allocated on the stack, which is faster but has limited size.

• Access Time: Elements can be accessed in constant time, O(1)O(1)O(1), since the address of

each element can be calculated using the base address and the index.

• Usage: Ideal for situations where the number of elements is known beforehand, such as storing

fixed-size data like days of the week, months of the year, etc.

Advantages:

• Simple and easy to use.

• Fast access time.

• No dynamic memory management overhead.

Disadvantages:

• Wastes memory if the allocated size is not fully used.

• Inflexible, as the size cannot be changed once declared.

Dynamic Arrays

Definition:

• Dynamic arrays, also known as resizable arrays, can change size during runtime. Memory

allocation happens on the heap, allowing the array to grow or shrink as needed.

Key Features:

• Resizable: The array can be resized, allowing it to grow or shrink based on the requirements.

• Memory Allocation: Memory is allocated on the heap, which is more flexible but can be slower

due to the overhead of dynamic memory management.

• Access Time: Similar to static arrays, elements can be accessed in constant time, O(1)O(1)O(1),

after they are created.

• Usage: Useful when the number of elements is not known in advance or when the array needs

to expand or contract during program execution.

Advantages:

• Flexible size, which can be adjusted as needed.

• More efficient use of memory, as it only allocates what is necessary.

Disadvantages:

• Slower than static arrays due to the overhead of dynamic memory management.

• May cause memory fragmentation if not managed carefully.

• Requires additional memory for maintaining the array’s capacity and size.

Summary

Feature Static Arrays Dynamic Arrays

Size Fixed Flexible/Resizable

Memory Allocation Stack Heap

Access Time O(1) O(1)

Memory Efficiency Less efficient if size is not fully used More efficient

Overhead Low Higher due to dynamic memory management

Use Cases When size is known beforehand When size may change or is not known

Java

Static Array Declaration

int[] staticArray = new int[5]; // Static array of size 5

staticArray[0] = 10; // Assigning value to the first element

Explanation: In Java, static arrays are created with a fixed size using the new keyword. The size of the array

is specified when the array is initialized.

Dynamic Array Declaration (Using ArrayList)

import java.util.ArrayList;

ArrayList<Integer> dynamicArray = new ArrayList<>(); // Dynamic array

dynamicArray.add(10); // Adding an element to the array

Explanation: In Java, ArrayList is used to create dynamic arrays that can grow and shrink at runtime.

C++

Static Array Declaration

int staticArray[5]; // Static array of size 5

staticArray[0] = 10; // Assigning value to the first element

Explanation: In C++, static arrays are declared with a fixed size that cannot be changed during runtime.

Dynamic Array Declaration:

int* dynamicArray = new int[5]; // Dynamic array of size 5

dynamicArray[0] = 10; // Assigning value to the first element

// If you need to resize the array, you can do so by creating a new array

// and copying the elements from the old array (manually).

delete[] dynamicArray; // Don't forget to free the memory

Explanation: In C++, dynamic arrays are created using the new keyword. The memory is allocated on the

heap, and the array size can be adjusted by reallocating memory.

Python

Static Array Declaration (Using Lists)

static_array = [0] * 5 # Static array of size 5

static_array[0] = 10 # Assigning value to the first element

Explanation: In Python, lists can be used to create static-like arrays by specifying a fixed size during

initialization. However, Python lists are inherently dynamic.

Dynamic Array Declaration (Using Lists)

dynamic_array = [] # Dynamic array

dynamic_array.append(10) # Adding an element to the array

Explanation: Python lists are dynamic by default, meaning their size can change during runtime. You can

append or remove elements as needed.

Summary

Language Static Array Declaration Dynamic Array Declaration

Java int[] arr = new int[5]; ArrayList<Integer> arr = new ArrayList<>();

C++ int arr[5]; int* arr = new int[5];

Python arr = [0] * 5 arr = [];

Each language has its own way of handling arrays, with Java and C++ providing both static and dynamic

options, while Python lists are inherently dynamic but can be initialized with a fixed size.

To find the maximum and minimum elements in an array, you can use the following algorithm:

Algorithm:

1. Initialize two variables: max_element and min_element with the first element of the array.

2. Iterate through the array:

o For each element, compare it with max_element. If it's greater, update max_element.

o Similarly, compare it with min_element. If it's smaller, update min_element.

3. Return max_element and min_element after the loop ends.

Python Code:

Java Code:

C++ Code:

Explanation:

1. Initialization:

o Both programs initialize maxElement and minElement with the first element of the array.

2. Iteration:

o They iterate through the array starting from the second element.

o During each iteration, they compare the current element with maxElement and

minElement, updating them if a larger or smaller element is found.

3. Output:

o After completing the loop, both the maximum and minimum elements are printed.

Example Output:

For the array {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5}, the output would be:

Maximum element: 9

Minimum element: 1

This solution is efficient with a time complexity of O(n).

2. Reverse an array:

python

Java:

C++:

#include <iostream>

using namespace std;

void reverseArray(int arr[], int n) {

 int start = 0;

 int end = n - 1;

 while (start < end) {

 // Swap the elements at start and end

 int temp = arr[start];

 arr[start] = arr[end];

 arr[end] = temp;

 start++;

 end--;

 }

}

int main() {

 int arr[] = {1, 2, 3, 4, 5};

 int n = sizeof(arr) / sizeof(arr[0]);

 reverseArray(arr, n);

 // Print the reversed array

 cout << "Reversed array: ";

 for (int i = 0; i < n; i++) {

 cout << arr[i] << " ";

 }

 return 0;

}

Explanation:

1. Initialization:

o The algorithms initialize two pointers: start at the beginning of the array and end at the

end.

2. Swapping:

o While start is less than end, the elements at these positions are swapped.

3. Update Pointers:

o After each swap, start is incremented, and end is decremented.

4. Termination:

o The loop terminates when start is no longer less than end, which means the array has

been reversed.

Example Output:

For the array {1, 2, 3, 4, 5}, the output will be: 5 4 3 2 1

find the Kth smallest or largest element in an array,

Python: Using Sorting

def kth_smallest(arr, k):

 arr.sort() # Sort the array

 return arr[k-1] # Return the k-th smallest element

def kth_largest(arr, k):

 arr.sort(reverse=True) # Sort the array in descending order

 return arr[k-1] # Return the k-th largest element

Example usage:

arr = [7, 10, 4, 3, 20, 15]

k = 3

print("3rd Smallest element:", kth_smallest(arr, k))

print("3rd Largest element:", kth_largest(arr, k))

Python: Quickselect

import random

def partition(arr, low, high):

 pivot = arr[high]

 i = low

 for j in range(low, high):

 if arr[j] <= pivot:

 arr[i], arr[j] = arr[j], arr[i]

 i += 1

 arr[i], arr[high] = arr[high], arr[i]

 return i

def quickselect(arr, low, high, k):

 if low == high:

 return arr[low]

 pivot_index = partition(arr, low, high)

 if k == pivot_index:

 return arr[k]

 elif k < pivot_index:

 return quickselect(arr, low, pivot_index - 1, k)

 else:

 return quickselect(arr, pivot_index + 1, high, k)

def kth_smallest(arr, k):

 return quickselect(arr, 0, len(arr) - 1, k - 1)

def kth_largest(arr, k):

 return quickselect(arr, 0, len(arr) - 1, len(arr) - k)

Example usage:

arr = [7, 10, 4, 3, 20, 15]

k = 3

print("3rd Smallest element:", kth_smallest(arr, k))

print("3rd Largest element:", kth_largest(arr, k))

Java Code:

Using Sorting:

import java.util.Arrays;

public class KthElement {

 public static int kthSmallest(int[] arr, int k) {

 Arrays.sort(arr); // Sort the array

 return arr[k - 1]; // Return the k-th smallest element

 }

 public static int kthLargest(int[] arr, int k) {

 Arrays.sort(arr); // Sort the array

 return arr[arr.length - k]; // Return the k-th largest element

 }

 public static void main(String[] args) {

 int[] arr = {7, 10, 4, 3, 20, 15};

 int k = 3;

 System.out.println("3rd Smallest element: " + kthSmallest(arr, k));

 System.out.println("3rd Largest element: " + kthLargest(arr, k));

 }

}

C++ Code:

Using Sorting:

#include <iostream>

#include <algorithm>

using namespace std;

int kthSmallest(int arr[], int n, int k) {

 sort(arr, arr + n); // Sort the array

 return arr[k - 1]; // Return the k-th smallest element

}

int kthLargest(int arr[], int n, int k) {

 sort(arr, arr + n, greater<int>()); // Sort the array in descending order

 return arr[k - 1]; // Return the k-th largest element

}

int main() {

 int arr[] = {7, 10, 4, 3, 20, 15};

 int n = sizeof(arr) / sizeof(arr[0]);

 int k = 3;

 cout << "3rd Smallest element: " << kthSmallest(arr, n, k) << endl;

 cout << "3rd Largest element: " << kthLargest(arr, n, k) << endl;

 return 0;

}

