Greedy and Dynamic
Programming

Dr. Gopal Chandra Jana

Assistant Professor

INTRODUCTION

» Greedy and Dynamic Programming are two powerful technigues in
algorithm design.

®» They are used to solve optimization problems efficiently.

erstanding their principles and differences is crucial for tackling
wide range of computational problems.

Also to consider certain parameters before applying any of these.

Choice Between Greedy and Dynamic Programming

» Greedy algorithms are preferred when the problem exhibits
the greedy-choice property and optimal subsiructure.

®» Dynamic Programming is suitable when the problem can be
broken down into overlapping sub-problems with optimal
substructure.

» Understanding the problem's characteristics is essential for
selecting the appropriate technique.

Deciding whether to apply a greedy or dynamic
programming approach to solve a problem depends

on several key parameters and characteristics of the

problem. Here are some factors to consider:

1. Optimal Substructure:

Greedy:
®» Opfimal solution can be constructed from locally optimal choices.
= Eg: Finding the shortest path in a graph using Dijkstra's algorithm.

Dynamic Programming:

Optimal solution can be derived from optimal solutions to sub-
problems.

» Eg: Calculating the nth Fibonacci number using memoization.

2. Overlapping Sub-problems:

Greedy:

» |f the problem does not have overlapping sub-problems, a greedy
approach is usually sufficient.

= Eg: Coin Change Problem where each coin can only be used once.

ynamic Programming:

®» |f the problem can be broken down into overlapping sub-problems,
dynamic programming is more appropriate.

= Eg: Coin Change Problem where coins can be reused to make change.

3. Greedy Choice Property:

Greedy:

» Makes locally optimal choices expecting a globally optimal
solution.

» Eg: Fractional Knapsack Problem, where items can be divided and selected
based on their value-to-weight ratio.

Dynamic Programming:
» Fvaluates all possible choices for optimal solution.

= Eg: 0/1 Knapsack Problem, where items cannot be divided, and a subset must
be chosen to maximize value without exceeding the weight limit.

4. Complexity and Efficiency:

Greedy:

» Simple and efficient but may not always provide optimal solution.

» Eg: Activity Selection Problem, where activities with the earliest finish fimes are chosen iteratively.

» Typically requires less memory.

= Eg: Huffman Coding for data compression, which constructs a binary tree based on the
requency of characters.

ynamic Programming:

®» Dynamic programming can guarantee the optimal solution but may be more
compvutationally expensive.

» Eg: Longest Common Subsequence Problem, where all possible subsequences must be
examined to find the longest common subsequence.

» May require more memory due to storing solutions to sub-problems.

= Eg: Matrix Chain Multiplication Problem, which involves finding the most efficient way to multiply
matrices.

Greedy Algorithm

Greedy algorithms make decisions based on the current best choice without
considering future consequences.

They aim to find the globally optimal solution by making a series of locally
optimal choices.

Typically efficient and easy to implement.

Examples: Dijkstra's algorithm for shortest paths

Kruskal's algorithm for minimum spanning trees.

Destination

/ \
12
10 (D)
Source
8

(S)

20

Greedy Problems:

Fractional Knapsack Problem: Given items with weight and value, determine the maximum
value of fractions of the items that can be taken into a knapsack of limited weight
capacity.

» Activity Selection Problem: Given a set of activities with start and finish fimes, select the
maximum number of non-overlapping activities that can be performed by a single person.

» Huffman Coding: Given a set of characters and their frequencies, construct a binary tree
such that the encoded binary codes for characters have minimum total length.

oin Change Problem: Given a set of coin denominations and a target amount, find the
minimum number of coins needed to make up the target amount.

Job Sequencing Problem: Given a set of jobs with deadlines and profits, find the maximum
profit subset of jobs that can be completed within their deadlines.

Minimum Spanning Tree Algorithms: Algorithms like Prim's and Kruskal's are greedy
approaches to find the minimum spanning free in a connected, undirected graph.

Dijkstra's Algorithm: To find the shortest path between nodes in a graph with non-negative
edge weights.

Fractional Knapsack

Given the weights and values of N items, in the form of {weight, Value} put these items in a
knapsack of capacity W to get the maximum total profit in the knapsack. In Fractional
Knapsack, we can break items for maximizing the total value of the knapsack.

Input: arr[] = {{5, 30}, {10, 20}, {20, 100}, {30, 90}, {40, 160}}, W = 60
Output: 270

/

R I opdyf et e i 90
I 5 30 = €0 I 5 6 g
/ J2 /o 20 2 £a 20 lo0 A&
L= 20 (oo < 15 Lo 66 4
Iy | 30 70 3 Ly 20 % 3
Is | 40 | 10 4 § ' 2y 1o 20 2

Net Selected Value =11 + I3 +15*35/40 = 30+100+160*35/40 =270

AcTivity Selection Problem

L)
4 S 6 7 8 9 1o I { 1 4 '.__G_U___]. e
, A
S 3 S ¢ 8 § - S ~ 2 & (_a',;;_gzj Gz 4 a, are not c_am’:
3 J— 7 A
5 8 7 @M RIS)y s o B _}_—:%:,:15?‘1::1 a, 4 0» » % no.
4 5 7 a1 e v |
G —Achvity Selector (S, f) . . s CdTTEmi T @uodedas are nok compaible.
ready hchyity selector (< | '
& <9 o Fmm aud ac are mot compativle
n(——leuﬂ% (s) _ n
7 6 o - lasdas « - ,
A «— {q_l§ . ag I
] &= —-———‘-l
an »
o-fwr me— 210 M 5 s n —ar] &) 'M___el—__%——‘&a 4ag ave no*‘c:»mfvahble
e f Sm2 e W 2 3 CarT a1 aw i net compabible with
. A
1™ N o o @l feEl - o - 7

return A . -
“Tha y@suﬂ\»ﬁ sek o’f* colected ackivibes e {Q1,94,Q4 and>

HUHMM (Oqu (Ihﬁocjw%fon)
~—

> Used oot Jomlum (o pIUAIOY)
= Vowiabls Levejﬂ\ (oclirg

E XGMH{ : Pfﬁk o

MmbaAbAld - - - -
v F-mvum‘c\

(00 hanacteni

Huffman Goding (Trbectr)

> Unped oot Jomlum (oM paUMION
= Voniable Levajfh (odirg

Examﬂxf%\obmj;

mmbaabAld - - -
v Wﬂic\
oo Chanactons o —To 00

G\)ﬂtd/j Ta .

—TFU ’Y\CH F\Ufi \Jf":l

ALty

' n Codm (hasacten ha
| \Vanioble [,crg% Huffma 9\\“‘\
L ot Buehix Paq/wmww’r Los1
> De combriemion:
- No (oda Should be
| Prafix of a0y ohunt
Fraquanda

Bu=3g O Y O v
b-20 00l 00 ©
C - 10 il 00 Q) ()

Phofin NOT Prutix

Gm%jlﬂqi

/'—n\] rﬂ(l" Fuciu.t"x

/. Codm Chasackn ha Amall
\/Nuth LCW“ Mman (9 (pds

Buehix Paq/u.‘xmww} fon

|1} De combremion .
aaa No (ods Shoudd be
9 Pufix of a0y o
AcC F)uqu.m(ia i

a-J0 01 O /t°

b-2 000l 00 O

¢ -lo 1l oo Bl it

'NOT Prudix
rmmnmm.gtnmmgav' ST X

1) Decombremion:.
) No (ods Should be
o Prbix of any o

aC Fraquanaa

e [o | o :
I~ 10 0l 0
O(’;CZ\O! Il 00 @ 1)
¢ L) N\ o
; : 0T Prubix
b %2’:‘“ v r‘l:m X

o din \i?\(uadC'! haa Amaiit)
\/Nuth Le'éj% Huffman (o (9 .

Buf Rgpment For
Tox| + WPX2 +\0X2- Decombnomion’
= |20 Bih No (eods Shoudd be

Pufix of apy oM
F)mqm\\(iﬂ *

a-7 O0 1 A !
b -220 [0 0l 0
¢ -lo 11 oo \/\‘5
Prfin . NOT Pndix ¢

L] El x
=3 rFar arTs YA B Y A A atla

(Odl‘n Chasackn haa AMNAS
e et

> w Bufix Pncvum\mc‘ Lo
At Decombremion .

No (ods Should be

Pufix of any ohan
qumncm DO H o

A -0 s ©) o
b - 20 Ol 00 O

Py o, T ot
Ll Dee, KT BerX

s GeekstorGe
\) [HSA / ! A computer science portal fo
/e [4 b, € F]

[io, 50, %, Yo, 89]

@{m@ 1) Buld o B’ma)\d bus

Aﬂgcmi’d\m | &) Evo\a\, input chanacken 1A
TR b o 290\\ Q Yaaf b
Uiah Z e + |0 EY 914"’ thidd @
(J - O/Q_X ﬁnbcuco\ 05 O arfmdw
jdx()) d /S0 5 [—.'L'Iol ‘ edé‘e an |.
J:Jé— eluo| ® Ew\a nodt 4o Jeay Path
o \ Tubnrents Hufrmon cods
a |lo , 20 08' Y hh&’.
2) Trovowe Hhs Binany Fur and print H codes
£ 0 a 1100
d 10 b 110\

a \100 € \\)

GeekstorGe
A computer sciency I\-ygf‘.l[n

/p.. CQ" cdll Ib|' lel' l}l]
[lo, 50, , Yo, 8]
) (suafe feof nodey and build a Min Heab h of al #u Lwoves mhdg.- (orderts

\ . ~ Of
) Whiks hedigel >) [alio] [b]ee] [e49] [d[5] [£]] 7

Q) Lft = h. extradMin() T Ttenatior /@3"] (%] [a]50] [£]g0]

Qm('jm = he&xbract Min() [alo] [b]20] 2

¢) Guale a ruw Dus nods with I Els o QpEita N~ sl
@® Chanaden a $ ‘\@g [e]e £180] [$]he
o Empn MM“’JQ,"'N?* ‘b\‘ﬂ, |alto 20 bl)3 7o)
® Lt am) mah’r childen an Sudt Tﬂ‘"" T} T 3730 [e]uo

ond :\.a’m‘ .mbechvd.a 02 [T b\ZO
d) Tt the wuw nodd into s afre]

@mwv\odahﬂmhmmm%uwd G0 [Ehs

M 1

Void bmvﬁ(ode»s(m* i =") [' $ [Qoo

Sutunm
if (oetth 1= 8) U 7

brini(at-th + " *+ M) o]s]

Suhuwm
binHoclsa (noet Seft, an + “0")
bunt(ode (1ot mdﬂ Mn o+)

PuH Bma@ Tnee

).,

B\mﬁvg Mmon (odsy Ariom Jrkx Lq

GeekstorGe

oot . F 0
Ouhs: J510
a /100
b 1101
/ ,QO/ e 1)
o\
r3_:/70

GeekstorGe
A 1'(':71]"1“!"7 science [K’If'f,"l fo

Ahud Node
Q’C than ¢h;
HufFman M‘”} Node %heft, £night;

Nods (int 4, than ¢, Node 0= NULL,

Shwduwne of a B)'naﬂg ¢ Nods % = NULL)
(07 Hffman) Tue Nods.

Noid printHodn (At oa(),
! bruonty gt CNads ™, Vecm(Nods %), Compard)

Jon(snt £20; J<h; A+)

heburh (raw Nods(om(s], $uglil):

Whus Che »ge 0>

C Node #0 = hetob0; e bab0s

LeeKksiorieek
A computer science portal for geeks

e

ant fugf], Ant 1) | Yoid poviredis(Noch %xact; Mg 30
i (Moot th [= '$') =
[cout <& noatath <" "KL\,

netun

{

3

Nods %0 = hetopQ: hepopl)

Nods xnods = taw Nodsa('$) frhug +ndug, &, 91).;

3 kobﬂh"’(ﬂO&l); Aben T Tronahion
3 bnin#(odn,(h.{ub()' ") Ele) T 7ﬂ¥I€ go
- alo) [afue]

Hhuxt combans §

na
boad obenaton () (Neds %1, Nods) L5 L _-
&t 2569 < L TR AL 30

mm
30 40 80, 60, right. T

§

baintodu(noat> feft, An + "),

bouind aclss (00t > ught, afn + ")

3]

o

Yo |

0

ol = (o o, 'l F']
ngl) = {30, Yo, B0, 69)

Inifiol)y h*
o

[0 |

Aften —m—)\d

i

210

e

=

60

70

bl4o

Huffman DeCode

//Function to return the decoded siring.
string decodeHuffmanData(struct MinHeapNode* roof, string s)

{
// Code here

string ans =™
struct MinHeapNode* curr = root;

for (int1=0;i<s.size(); i++) {

if (s[i] =='0')
curr = curr->left;
else

curr = curr->right;

// reached leaf node

if (curr->left == NULL and curr->right == NULL) {
ans += curr->dataq;
curr = rooft;

}
}

// cout<<ans<<end]!;
return ans + '\0";

}

Coin Change -Greedy

Given a value of V Rs and an infinite supply of each of the denominations {1, 2, 5, 10, 20, 50,
100, 500, 1000} valued coins/notes, The task is o find the minimum numiber of coins and/or
notes needed to make the change?¢

Examples:
Input: V = 121
Output: 3

Explanation: We need a 100 Rs note, a 20 Rs note, and a 1 Rs coin.

1.Declare a vector that store the coins.
2. while n is greater than O iterate through greater to
smaller coins:
1. if nis greater than equal to 2000 than push 2000
into the vector and decrement its value from n.
2. else if nis greater than equal to 500 than push
500 into the vector and decrement its value from
n.
3. And so on till the last coin using ladder if else.

Coin Change -Greedy

Given a value of V Rs and an infinite supply of each of the denominations {1, 2, 5, 10, 20, 50,
100, 500, 1000} valued coins/notes, The task is o find the minimum numiber of coins and/or
notes needed to make the change?¢

Examples:
Input: V = 121
Output: 3

Explanation: We need a 100 Rs note, a 20 Rs note, and a 1 Rs coin.

 Sort the array of coins in decreasing order.

* Initialize ans vector as empty.

* Find the largest denomination that is smaller
than remaining amount and while it is smaller than
the remaining amount:
* Add found denomination to ans. Subtract value of

found denomination from amount.
* If amount becomes 0, then print ans.

/] C++ program to find minimum
// number of denominations
#include <bits/stdc++.h>

using namespace std;

// All denominations of Indian Currency

= sizeof(denomination) /
sizeof(denomination[0]);

Coin Change -Greedy

void findMin(int V)

{

sort(denomination, denomination + n);
// Initialize result
vector<int> ans;
// Traverse through all denomination
for (inti=n-1;i>=0;i-){
// Find denominations
while (V >= denominationi]) {
V -= denomination(i];
ans.push_back(denomination(i]);

}

for (iﬂT I=0:1< ClnS.SiZG()I i++)

cout << ansJi] <<

?
n
estio

u

g

y

n

A

9

	Slide 1: Greedy and Dynamic Programming
	Slide 2: INTRODUCTION
	Slide 3: Choice Between Greedy and Dynamic Programming
	Slide 4
	Slide 5: 1. Optimal Substructure:
	Slide 6: 2. Overlapping Sub-problems:
	Slide 7: 3. Greedy Choice Property:
	Slide 8: 4. Complexity and Efficiency:
	Slide 9: Greedy Algorithm
	Slide 10
	Slide 11: Greedy Problems:
	Slide 12: Fractional Knapsack
	Slide 13: Activity Selection Problem
	Slide 14: Huffman Code
	Slide 15: Huffman Code
	Slide 16: Huffman Code
	Slide 17: Huffman Code
	Slide 18: Huffman Code
	Slide 19: Huffman Code
	Slide 20: Huffman Code
	Slide 21: Huffman Code
	Slide 22: Huffman Code
	Slide 23: Huffman Code
	Slide 24: Huffman Code
	Slide 25: Huffman Code
	Slide 26: Huffman DeCode
	Slide 27: Coin Change -Greedy
	Slide 28: Coin Change -Greedy
	Slide 29: Coin Change -Greedy
	Slide 30

