
Greedy and Dynamic

Programming

Dr. Gopal Chandra Jana

Assistant Professor

INTRODUCTION

Greedy and Dynamic Programming are two powerful techniques in

algorithm design.

 They are used to solve optimization problems efficiently.

 Understanding their principles and differences is crucial for tackling

a wide range of computational problems.

 Also to consider certain parameters before applying any of these.

Choice Between Greedy and Dynamic Programming

Greedy algorithms are preferred when the problem exhibits

the greedy-choice property and optimal substructure.

 Dynamic Programming is suitable when the problem can be

broken down into overlapping sub-problems with optimal

substructure.

 Understanding the problem's characteristics is essential for

selecting the appropriate technique.

Deciding whether to apply a greedy or dynamic

programming approach to solve a problem depends

on several key parameters and characteristics of the

problem. Here are some factors to consider:

1. Optimal Substructure:

Greedy:

Optimal solution can be constructed from locally optimal choices.

 Eg: Finding the shortest path in a graph using Dijkstra's algorithm.

Dynamic Programming:

Optimal solution can be derived from optimal solutions to sub-

problems.

 Eg: Calculating the nth Fibonacci number using memoization.

2. Overlapping Sub-problems:

Greedy:

 If the problem does not have overlapping sub-problems, a greedy

approach is usually sufficient.

 Eg: Coin Change Problem where each coin can only be used once.

Dynamic Programming:

 If the problem can be broken down into overlapping sub-problems,

dynamic programming is more appropriate.

 Eg: Coin Change Problem where coins can be reused to make change.

3. Greedy Choice Property:

Greedy:

Makes locally optimal choices expecting a globally optimal

solution.

 Eg: Fractional Knapsack Problem, where items can be divided and selected

based on their value-to-weight ratio.

Dynamic Programming:

 Evaluates all possible choices for optimal solution.

 Eg: 0/1 Knapsack Problem, where items cannot be divided, and a subset must

be chosen to maximize value without exceeding the weight limit.

4. Complexity and Efficiency:
Greedy:

 Simple and efficient but may not always provide optimal solution.

 Eg: Activity Selection Problem, where activities with the earliest finish times are chosen iteratively.

 Typically requires less memory.

 Eg: Huffman Coding for data compression, which constructs a binary tree based on the

frequency of characters.

Dynamic Programming:

 Dynamic programming can guarantee the optimal solution but may be more

computationally expensive.

 Eg: Longest Common Subsequence Problem, where all possible subsequences must be

examined to find the longest common subsequence.

 May require more memory due to storing solutions to sub-problems.

 Eg: Matrix Chain Multiplication Problem, which involves finding the most efficient way to multiply

matrices.

Greedy Algorithm

 Greedy algorithms make decisions based on the current best choice without

considering future consequences.

 They aim to find the globally optimal solution by making a series of locally

optimal choices.

 Typically efficient and easy to implement.

 Examples: Dijkstra's algorithm for shortest paths

Kruskal's algorithm for minimum spanning trees.

20

10

5

8

12

3

Greedy Problems:
 Fractional Knapsack Problem: Given items with weight and value, determine the maximum

value of fractions of the items that can be taken into a knapsack of limited weight

capacity.

 Activity Selection Problem: Given a set of activities with start and finish times, select the
maximum number of non-overlapping activities that can be performed by a single person.

 Huffman Coding: Given a set of characters and their frequencies, construct a binary tree

such that the encoded binary codes for characters have minimum total length.

 Coin Change Problem: Given a set of coin denominations and a target amount, find the

minimum number of coins needed to make up the target amount.

 Job Sequencing Problem: Given a set of jobs with deadlines and profits, find the maximum
profit subset of jobs that can be completed within their deadlines.

 Minimum Spanning Tree Algorithms: Algorithms like Prim's and Kruskal's are greedy

approaches to find the minimum spanning tree in a connected, undirected graph.

 Dijkstra's Algorithm: To find the shortest path between nodes in a graph with non-negative

edge weights.

Fractional Knapsack

Given the weights and values of N items, in the form of {weight, Value} put these items in a

knapsack of capacity W to get the maximum total profit in the knapsack. In Fractional

Knapsack, we can break items for maximizing the total value of the knapsack.

Input: arr[] = {{5, 30}, {10, 20}, {20, 100}, {30, 90}, {40, 160}}, W = 60

Output: 270

Net Selected Value = I1 + I3 + I5*35/40 = 30+100+160*35/40 =270

Activity Selection Problem

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman Code

Huffman DeCode
//Function to return the decoded string.

string decodeHuffmanData(struct MinHeapNode* root, string s)
{

 // Code here

 string ans = "";

 struct MinHeapNode* curr = root;

 for (int i = 0; i < s.size(); i++) {

 if (s[i] == '0')

 curr = curr->left;

 else

 curr = curr->right;

 // reached leaf node

 if (curr->left == NULL and curr->right == NULL) {

 ans += curr->data;

 curr = root;

 }

 }

 // cout<<ans<<endl;

 return ans + '\0';

}

Coin Change -Greedy
Given a value of V Rs and an infinite supply of each of the denominations {1, 2, 5, 10, 20, 50,

100, 500, 1000} valued coins/notes, The task is to find the minimum number of coins and/or

notes needed to make the change?

Examples:

Input: V = 121

Output: 3

Explanation: We need a 100 Rs note, a 20 Rs note, and a 1 Rs coin.

1.Declare a vector that store the coins.
2. while n is greater than 0 iterate through greater to
smaller coins:

1. if n is greater than equal to 2000 than push 2000
into the vector and decrement its value from n.

2. else if n is greater than equal to 500 than push
500 into the vector and decrement its value from
n.

3. And so on till the last coin using ladder if else.

Coin Change -Greedy
Given a value of V Rs and an infinite supply of each of the denominations {1, 2, 5, 10, 20, 50,

100, 500, 1000} valued coins/notes, The task is to find the minimum number of coins and/or

notes needed to make the change?

Examples:

Input: V = 121

Output: 3

Explanation: We need a 100 Rs note, a 20 Rs note, and a 1 Rs coin.

• Sort the array of coins in decreasing order.
• Initialize ans vector as empty.
• Find the largest denomination that is smaller

than remaining amount and while it is smaller than
the remaining amount:
• Add found denomination to ans. Subtract value of

found denomination from amount.
• If amount becomes 0, then print ans.

Coin Change -Greedy

// C++ program to find minimum

// number of denominations

#include <bits/stdc++.h>

using namespace std;

// All denominations of Indian Currency

int denomination[]

= { 1, 2, 5, 10, 20, 50, 100, 500, 1000 };

int n = sizeof(denomination) /

 sizeof(denomination[0]);

void findMin(int V)

{

sort(denomination, denomination + n);

// Initialize result

vector<int> ans;

// Traverse through all denomination

for (int i = n - 1; i >= 0; i--) {

// Find denominations

while (V >= denomination[i]) {

V -= denomination[i];

ans.push_back(denomination[i]);

}

}

for (int i = 0; i < ans.size(); i++)

cout << ans[i] << " ";

}

Any question?

	Slide 1: Greedy and Dynamic Programming
	Slide 2: INTRODUCTION
	Slide 3: Choice Between Greedy and Dynamic Programming
	Slide 4
	Slide 5: 1. Optimal Substructure:
	Slide 6: 2. Overlapping Sub-problems:
	Slide 7: 3. Greedy Choice Property:
	Slide 8: 4. Complexity and Efficiency:
	Slide 9: Greedy Algorithm
	Slide 10
	Slide 11: Greedy Problems:
	Slide 12: Fractional Knapsack
	Slide 13: Activity Selection Problem
	Slide 14: Huffman Code
	Slide 15: Huffman Code
	Slide 16: Huffman Code
	Slide 17: Huffman Code
	Slide 18: Huffman Code
	Slide 19: Huffman Code
	Slide 20: Huffman Code
	Slide 21: Huffman Code
	Slide 22: Huffman Code
	Slide 23: Huffman Code
	Slide 24: Huffman Code
	Slide 25: Huffman Code
	Slide 26: Huffman DeCode
	Slide 27: Coin Change -Greedy
	Slide 28: Coin Change -Greedy
	Slide 29: Coin Change -Greedy
	Slide 30

