
Detect cycle in an undirected graph

import java.util.*;

● import java.util.*: Imports all utility classes from the Java library, including
ArrayList, List, and others, which are needed for creating the graph structure.

public class GfG {

● class GfG: Defines the main class named GfG (short for GeeksforGeeks, commonly
used for coding examples).

// A recursive function that
// uses visited[] and parent to detect
// cycle in subgraph reachable from vertex v.
static boolean isCyclicUtil(int v, List<List<Integer>> adj,

boolean[] visited, int parent) {

● isCyclicUtil: This is a recursive helper function used to check whether a cycle exists
in the part of the graph that can be reached from vertex v.

○ Parameters:
■ int v: The current vertex.
■ List<List<Integer>> adj: The adjacency list representing the

graph.
■ boolean[] visited: Array to mark visited nodes.
■ int parent: Tracks the parent of the current vertex to avoid false cycle

detection.

// Mark the current node as visited
visited[v] = true;

● visited[v] = true: Marks the current node v as visited to avoid revisiting it.



// Recur for all the vertices adjacent to this vertex
for (int i : adj.get(v)) {

● for (int i : adj.get(v)): Iterates over all vertices adjacent to vertex v.

// If an adjacent vertex is not visited,
// then recur for that adjacent
if (!visited[i]) {

if (isCyclicUtil(i, adj, visited, v))
return true;

}

● if (!visited[i]): If the adjacent vertex i has not been visited, recursively call
isCyclicUtil for that vertex.

● if (isCyclicUtil(i, adj, visited, v)) return true;: If the recursive call
returns true, a cycle has been found, so return true.

// If an adjacent vertex is visited and
// is not parent of current vertex,
// then there exists a cycle in the graph.
else if (i != parent)

return true;

● else if (i != parent): If the adjacent vertex i is already visited and is not the
parent of the current vertex v, a cycle is detected (a back edge exists).

● return true: Return true since a cycle is found.

return false;
}

● return false: If no cycle is detected, return false to indicate that the current path
has no cycle.



// Returns true if the graph contains a cycle, else false.
static boolean isCyclic(int V, List<List<Integer>> adj) {

● isCyclic: This is the main function to detect if there is a cycle in the undirected graph.
○ Parameters:

■ int V: The number of vertices.
■ List<List<Integer>> adj: The adjacency list representing the

graph.

// Mark all the vertices as not visited
boolean[] visited = new boolean[V];

● boolean[] visited = new boolean[V];: Initializes a visited array to keep
track of whether a vertex has been visited.

// Call the recursive helper function to detect cycle in different DFS
trees
for (int u = 0; u < V; u++) {

● for (int u = 0; u < V; u++): Loop through all vertices in the graph.

// Don't recur for u if it is already visited
if (!visited[u]) {

if (isCyclicUtil(u, adj, visited, -1))
return true;

}

● if (!visited[u]): For any unvisited vertex u, call the recursive helper function
isCyclicUtil to check for a cycle. If a cycle is found, return true.

● isCyclicUtil(u, adj, visited, -1): The parent is passed as -1 since there is
no parent for the first vertex in DFS traversal.



return false;
}

● return false: If no cycle is detected after checking all vertices, return false.

Driver Code (Main Function)

// Driver program to test above functions
public static void main(String[] args) {

int V = 3;
List<List<Integer>> adj = new ArrayList<>(V);

● public static void main: The main method where the execution of the program
begins.

● int V = 3: The graph contains 3 vertices.
● List<List<Integer>> adj = new ArrayList<>(V);: Creates an adjacency list

to store the graph's edges. The graph has V vertices.

for (int i = 0; i < V; i++) {
adj.add(new ArrayList<>());

}

● Initialize adjacency list: Creates empty adjacency lists for each vertex (0, 1, and 2).

// Add edges to the graph
adj.get(1).add(0);
adj.get(0).add(1);
adj.get(0).add(2);
adj.get(2).add(0);
adj.get(1).add(2);
adj.get(2).add(1);

● Adding edges to form the graph:
○ 1 → 0 and 0 → 1 (edge between vertex 1 and 0),
○ 0 → 2 and 2 → 0 (edge between vertex 0 and 2),
○ 1 → 2 and 2 → 1 (edge between vertex 1 and 2).



○ This forms a cycle in the graph.

System.out.println(isCyclic(V, adj) ? "Contains cycle" : "No Cycle");

● Cycle detection: Calls the isCyclic function to check if the graph contains a cycle. If
true, it prints "Contains cycle"; otherwise, it prints "No Cycle".

Another Graph Example

V = 3;
List<List<Integer>> adj2 = new ArrayList<>(V);
for (int i = 0; i < V; i++) {

adj2.add(new ArrayList<>());
}
adj2.get(0).add(1);
adj2.get(1).add(0);
adj2.get(1).add(2);
adj2.get(2).add(1);

● Another graph definition: Creates a new adjacency list for a second graph with 3
vertices and adds edges:

○ 0 → 1 and 1 → 0 (edge between vertex 0 and 1),
○ 1 → 2 and 2 → 1 (edge between vertex 1 and 2).
○ This graph does not contain a cycle.

System.out.println(isCyclic(V, adj2) ? "Contains Cycle" : "No Cycle");

● Cycle detection for the second graph: Checks if the second graph contains a cycle
and prints the result.


