
import java.util.ArrayList;
import java.util.List;

● import statements: These import the ArrayList and List classes from the Java
utility library. They are used for creating dynamic lists.

class GfG {

● class GfG: This defines a class named GfG (short for GeeksforGeeks, where this type
of code is often shared) which will contain methods for detecting cycles in a graph.

// Utility function to detect cycle in a directed graph
private static boolean isCyclicUtil(List<List<Integer>> adj, int u,

boolean[] visited, boolean[] recStack) {

● isCyclicUtil: This is a recursive helper function that checks whether there's a cycle
starting from vertex u.

● Parameters:
○ List<List<Integer>> adj: The adjacency list representing the graph.
○ int u: The current node being processed.
○ boolean[] visited: Array tracking whether a node has been visited.
○ boolean[] recStack: Array tracking nodes in the current recursive stack (part

of the DFS traversal).

java
Copy code
if (!visited[u]) {

● if (!visited[u]): If the current node u has not been visited, continue processing it.
Otherwise, skip this node since it has already been processed.

// Mark the current node as visited
// and part of recursion stack
visited[u] = true;
recStack[u] = true;



● visited[u] = true: Mark the current node as visited.
● recStack[u] = true: Mark the current node as being part of the recursion stack to

detect back edges (which form cycles).

// Recur for all the vertices adjacent to this vertex
for (int x : adj.get(u)) {

● for (int x : adj.get(u)): For each adjacent node x connected to node u in the
graph, iterate through its neighbors.

if (!visited[x] && isCyclicUtil(adj, x, visited, recStack)) {
return true;

} else if (recStack[x]) {
return true;

}

● if (!visited[x] && isCyclicUtil(adj, x, visited, recStack)): If the
adjacent node x has not been visited, recursively call isCyclicUtil to check if visiting
x leads to a cycle.

● else if (recStack[x]): If the adjacent node x is already in the recursion stack
(recStack[x] is true), it means there's a back edge, which indicates a cycle. Return
true.

}
// Remove the vertex from recursion stack
recStack[u] = false;
return false;

● recStack[u] = false: Remove the node u from the recursion stack once all its
neighbors have been processed.

● return false: Return false if no cycle was detected starting from this node.

// Function to detect cycle in a directed graph



public static boolean isCyclic(List<List<Integer>> adj, int V) {
boolean[] visited = new boolean[V];
boolean[] recStack = new boolean[V];

● isCyclic: This is the main function that detects if there is a cycle in the graph.
● boolean[] visited: Array to track if a node has been visited.
● boolean[] recStack: Array to track the recursion stack.

// Call the recursive helper function to detect cycle in different DFS
trees
for (int i = 0; i < V; i++) {

if (!visited[i] && isCyclicUtil(adj, i, visited, recStack)) {
return true;

}
}

● for (int i = 0; i < V; i++): Iterate through each node in the graph.
● if (!visited[i] && isCyclicUtil(adj, i, visited, recStack)): If the

node has not been visited, call isCyclicUtil to check for cycles from that node.
● return true: If any cycle is detected, return true.

return false;
}

● return false: If no cycle is found after checking all nodes, return false.

// Driver function
public static void main(String[] args) {

int V = 4;
List<List<Integer>> adj = new ArrayList<>();

● public static void main: The main method where the program execution begins.
● int V = 4: The number of vertices in the graph is set to 4.



● List<List<Integer>> adj = new ArrayList<>(): Create an adjacency list to
represent the graph with V vertices.

// Initialize adjacency list
for (int i = 0; i < V; i++) {

adj.add(new ArrayList<>());
}

● for (int i = 0; i < V; i++): Initialize each element of the adjacency list as a
new ArrayList.

// Adding edges to the graph
adj.get(0).add(1);
adj.get(0).add(2);
adj.get(1).add(2);
adj.get(2).add(0);
adj.get(2).add(3);
adj.get(3).add(3);

● Adding edges: The edges of the graph are defined by adding directed edges between
vertices:

○ 0 → 1, 0 → 2, 1 → 2, 2 → 0, 2 → 3, and 3 → 3 (a self-loop on node 3).

// Function call
if (isCyclic(adj, V)) {

System.out.println("Contains cycle");
} else {

System.out.println("No Cycle");
}

● isCyclic(adj, V): Call the isCyclic function to check if the graph contains a
cycle.

● Output: Print whether the graph contains a cycle or not based on the result.


