
Connected Components in an
Undirected Graph

By

Dr GC Jana

Connected Components in an Undirected
Graph

Problem Statement: Given an undirected graph, the task is to print all the connected

components line by line.

Input: Consider the following graph
Output:
0 1 2
3 4

Explanation: There are 2 different connected
components. They are {0, 1, 2} and {3, 4}.

Connected Components for undirected graph
using DFS

Finding connected components for an undirected graph is an easier task. The idea
is to

Do either BFS or DFS starting from every unvisited vertex, and we get all strongly
connected components.

Connected Components for undirected graph
using DFS
Follow the steps mentioned below to implement the idea using DFS:

• Initialize all vertices as not visited.
• Do the following for every vertex v:
➢ If v is not visited before, call the DFS. and print the

newline character to print each component in a new
line
o Mark v as visited and print v.
o For every adjacent u of v, If u is not visited, then

recursively call the DFS.

Connected Components for undirected graph
using DFS
// Java program to print connected components in
// an undirected graph
import java.util.ArrayList;
class Graph {
 // A user define class to represent a graph.
 // A graph is an array of adjacency lists.
 // Size of array will be V (number of vertices
 // in graph)
 int V;
 ArrayList<ArrayList<Integer> > adjListArray;

// constructor
 Graph(int V)
 {
 this.V = V;
 // define the size of array as
 // number of vertices
 adjListArray = new ArrayList<>();

 // Create a new list for each vertex
 // such that adjacent nodes can be stored

 for (int i = 0; i < V; i++) {
 adjListArray.add(i, new ArrayList<>());
 }
 }

Connected Components for undirected graph
using DFS

// Adds an edge to an undirected graph
 void addEdge(int src, int dest)
 {
 // Add an edge from src to dest.
 adjListArray.get(src).add(dest);

 // Since graph is undirected, add an edge from dest
 // to src also
 adjListArray.get(dest).add(src);
 }

void DFSUtil(int v, boolean[] visited)
 {
 // Mark the current node as visited and print it
 visited[v] = true;
 System.out.print(v + " ");
 // Recur for all the vertices
 // adjacent to this vertex
 for (int x : adjListArray.get(v)) {
 if (!visited[x])
 DFSUtil(x, visited);
 }
 }

Connected Components for undirected graph
using DFS

void connectedComponents()
 {
 // Mark all the vertices as not visited
 boolean[] visited = new boolean[V];
 for (int v = 0; v < V; ++v) {
 if (!visited[v]) {
 // print all reachable vertices
 // from v
 DFSUtil(v, visited);
 System.out.println();
 }
 }
 }

// Driver code
 public static void main(String[] args)
 {
 // Create a graph given in the above diagram
 Graph g = new Graph(5);

 g.addEdge(1, 0);
 g.addEdge(2, 1);
 g.addEdge(3, 4);
 System.out.println(
 "Following are connected components");
 g.connectedComponents();
 }
} Output

Following are connected components
0 1 2
3 4

Connected Components for undirected graph
using DFS

Time Complexity: O(V + E) where V is the number of vertices and E is the number of

edges.

Auxiliary Space: O(V)

Connected Component for undirected graph
using Disjoint Set Union:
The idea to solve the problem using DSU (Disjoint Set Union) is

Initially, declare all the nodes as individual subsets and then visit them. When a

new unvisited node is encountered, unite it with the under. In this manner, a single

component will be visited in each traversal.

Connected Component for undirected graph
using Disjoint Set Union:

Follow the below steps to implement the idea:

• Declare an array arr[] of size V where V is the total number of nodes.

• For every index i of array arr[], the value denotes who the parent of ith vertex is.

• Initialize every node as the parent of itself and then while adding them together,

change their parents accordingly.

• Traverse the nodes from 0 to V:

o For each node that is the parent of itself start the DSU.

o Print the nodes of that disjoint set as they belong to one component.

Connected Component for undirected graph
using Disjoint Set Union:

import java.util.*;

class ConnectedComponents {
 public static int merge(int[] parent, int x) {
 if (parent[x] == x)
 return x;
 return merge(parent, parent[x]);
 }

 public static int connectedComponents(int n,
List<List<Integer>> edges) {
 int[] parent = new int[n];
 for (int i = 0; i < n; i++) {
 parent[i] = i;
 }

for (List<Integer> x : edges) {
 parent[merge(parent, x.get(0))] = merge(parent,
x.get(1));
 }

 int ans = 0;
 for (int i = 0; i < n; i++) {
 if (parent[i] == i) ans++;
 }

 for (int i = 0; i < n; i++) {
 parent[i] = merge(parent, parent[i]);
 }

 Map<Integer, List<Integer>> m = new HashMap<>();
 for (int i = 0; i < n; i++) {
 m.computeIfAbsent(parent[i], k -> new
ArrayList<>()).add(i);
 }

Connected Component for undirected graph
using Disjoint Set Union:

for (Map.Entry<Integer, List<Integer>> it : m.entrySet()) {
 List<Integer> l = it.getValue();
 for (int x : l) {
 System.out.print(x + " ");
 }
 System.out.println();
 }
 return ans;
 }

public static void main(String[] args) {
 int n = 5;
 List<List<Integer>> edges = new ArrayList<>();
 edges.add(Arrays.asList(0, 1));
 edges.add(Arrays.asList(2, 1));
 edges.add(Arrays.asList(3, 4));

 System.out.println("Following are connected
components:");
 int ans = connectedComponents(n, edges);
 }
}

Reference

• https://www.geeksforgeeks.org/connected-components-in-an-
undirected-graph/

https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/
https://www.geeksforgeeks.org/connected-components-in-an-undirected-graph/

	Slide 1: Connected Components in an Undirected Graph
	Slide 2: Connected Components in an Undirected Graph
	Slide 3: Connected Components for undirected graph using DFS
	Slide 4: Connected Components for undirected graph using DFS
	Slide 5: Connected Components for undirected graph using DFS
	Slide 6: Connected Components for undirected graph using DFS
	Slide 7: Connected Components for undirected graph using DFS
	Slide 8: Connected Components for undirected graph using DFS
	Slide 9: Connected Component for undirected graph using Disjoint Set Union:
	Slide 10: Connected Component for undirected graph using Disjoint Set Union:
	Slide 11: Connected Component for undirected graph using Disjoint Set Union:
	Slide 12: Connected Component for undirected graph using Disjoint Set Union:
	Slide 13: Reference

