
3 Characterizing Running Times

The order of growth of the running time of an algorithm, deûned in Chapter 2,
gives a simple way to characterize the algorithm’s efûciency and also allows us
to compare it with alternative algorithms. Once the input size n becomes large
enough, merge sort, with its ‚.n lg n/ worst-case running time, beats insertion sort,
whose worst-case running time is ‚.n 2 /. Although we can sometimes determine
the exact running time of an algorithm, as we did for insertion sort in Chapter 2,
the extra precision is rarely worth the effort of computing it. For large enough
inputs, the multiplicative constants and lower-order terms of an exact running time
are dominated by the effects of the input size itself.

When we look at input sizes large enough to make relevant only the order of
growth of the running time, we are studying the asymptotic efûciency of algo-
rithms. That is, we are concerned with how the running time of an algorithm
increases with the size of the input in the limit, as the size of the input increases
without bound. Usually, an algorithm that is asymptotically more efûcient is the
best choice for all but very small inputs.

This chapter gives several standard methods for simplifying the asymptotic anal-
ysis of algorithms. The next section presents informally the three most commonly
used types of <asymptotic notation,= of which we have already seen an example
in ‚-notation. It also shows one way to use these asymptotic notations to reason
about the worst-case running time of insertion sort. Then we look at asymptotic
notations more formally and present several notational con ventions used through-
out this book. The last section reviews the behavior of functions that commonly
arise when analyzing algorithms.

50 Chapter 3 Characterizing Running Times

3.1 O-notation, -notation, and ‚-notation

When we analyzed the worst-case running time of insertion sort in Chapter 2, we
started with the complicated expression  c 5

2
C
c 6

2
C
c 7

2

Í
n 2 C


c 1 C c 2 C c 4 C

c 5

2

c 6

2

c 7

2
C c 8

Í
n

 .c 2 C c 4 C c 5 C c 8 / :

We then discarded the lower-order terms .c 1 C c 2 C c 4 C c 5 =2  c 6 =2  c 7 =2 C c 8 /n
and c 2 C c 4 C c 5 C c 8 , and we also ignored the coefûcient c 5 =2 C c 6 =2 C c 7 =2
of n 2 . That left just the factor n 2 , which we put into ‚-notation as ‚.n 2 /. We
use this style to characterize running times of algorithms: discard the lower-order
terms and the coefûcient of the leading term, and use a notation that focuses on the
rate of growth of the running time.
‚-notation is not the only such <asymptotic notation.= In this section, we’ll

see other forms of asymptotic notation as well. We start with intuitive looks at
these notations, revisiting insertion sort to see how we can apply them. In the next
section, we’ll see the formal deûnitions of our asymptotic notations, along with
conventions for using them.
Before we get into speciûcs, bear in mind that the asymptotic notations we’ll see

are designed so that they characterize functions in general. It so happens that the
functions we are most interested in denote the running times of algorithms. But
asymptotic notation can apply to functions that characterize some other aspect of
algorithms (the amount of space they use, for example), or even to functions that
have nothing whatsoever to do with algorithms.

O-notation

O-notation characterizes an upper bound on the asymptotic behavior of a function.
In other words, it says that a function grows no faster than a certain rate, based on
the highest-order term. Consider, for example, the function 7n 3 C 100n 2  20n C 6.
Its highest-order term is 7n 3 , and so we say that this function’s rate of growth is n 3 .
Because this function grows no faster than n 3 , we can write that it is O.n 3 /. You
might be surprised that we can also write that the function 7n 3 C 100n 2  20n C 6
is O.n 4 /. Why? Because the function grows more slowly than n 4 , we are correct
in saying that it grows no faster. As you might have guessed, this function is also
O.n 5 /, O.n 6 /, and so on. More generally, it is O.n c / for any constant c  3.

3.1 O-notation, �-notation, and ‚-notation 51

-notation

�-notation characterizes a lower bound on the asymptotic behavior of a function.
In other words, it says that a function grows at least as fast as a certain rate, based
4as in O-notation4on the highest-order term. Because the highest-order term
in the function 7n 3 C 100n 2  20n C 6 grows at least as fast as n 3 , this function
is �.n 3 /. This function is also �.n 2 / and �.n/. More generally, it is �.n c / for
any constant c හ 3.

‚-notation

‚-notation characterizes a tight bound on the asymptotic behavior of a function. It
says that a function grows precisely at a certain rate, based4once again4on the
highest-order term. Put another way, ‚-notation characterizes the rate of growth of
the function to within a constant factor from above and to within a constant factor
from below. These two constant factors need not be equal.

If you can show that a function is both O.f .n// and �.f .n// for some func-
tion f .n/, then you have shown that the function is ‚.f .n//. (The next section
states this fact as a theorem.) For example, since the function 7n 3 C100n 2 20nC6
is both O.n 3 / and �.n 3 /, it is also ‚.n 3 /.

Example: Insertion sort
Let’s revisit insertion sort and see how to work with asymptotic notation to charac-
terize its ‚.n 2 / worst-case running time without evaluating summations as we did
in Chapter 2. Here is the I NSERTION-SORT procedure once again:

I NSERTION-SORT .A; n/
1 for i D 2 to n
2 key D AŒi�
3 // Insert AŒi� into the sorted subarray AŒ1 W i  1�.
4 j D i  1
5 while j > 0 and AŒj � > key
6 AŒj C 1� D AŒj �
7 j D j  1
8 AŒj C 1� D key

What can we observe about how the pseudocode operates? The procedure has
nested loops. The outer loop is a for loop that runs n  1 times, regardless of the
values being sorted. The inner loop is a while loop, but the number of iterations
it makes depends on the values being sorted. The loop variable j starts at i  1

52 Chapter 3 Characterizing Running Times

each of the
n/3 largest

values moves

through each
of these

n/3 positions

to somewhere
in these

n/3 positions

AŒ1 W n=3� AŒn=3 C 1 W 2n=3� AŒ2n=3 C 1 W n�

Figure 3.1 The �.n 2 / lower bound for insertion sort. If the ûrst n=3 positions contain the n=3
largest values, each of these values must move through each of the middle n=3 positions, one position
at a time, to end up somewhere in the last n=3 positions. Since each of n=3 values moves through at
least each of n=3 positions, the time taken in this case is at least proportional to .n=3/.n=3/ D n 2 =9,
or �.n 2 /.

and decreases by 1 in each iteration until either it reaches 0 or AŒj � හ key. For a
given value of i , the while loop might iterate 0 times, i  1 times, or anywhere in
between. The body of the while loop (lines 637) takes constant time per iteration
of the while loop.
These observations sufûce to deduce an O.n 2 / running time for any case of

I NSERTION-SORT, giving us a blanket statement that covers all inputs. The run-
ning time is dominated by the inner loop. Because each of the n  1 iterations of
the outer loop causes the inner loop to iterate at most i  1 times, and because i is
at most n, the total number of iterations of the inner loop is at most .n  1/.n  1/,
which is less than n 2 . Since each iteration of the inner loop takes constant time,
the total time spent in the inner loop is at most a constant times n 2 , or O.n 2 /.
With a little creativity, we can also see that the worst-case running time of

I NSERTION-SORT is �.n 2 /. By saying that the worst-case running time of an
algorithm is �.n 2 /, we mean that for every input size n above a certain threshold,
there is at least one input of size n for which the algorithm takes at least cn 2 time,
for some positive constant c . It does not necessarily mean that the algorithm takes
at least cn 2 time for all inputs.
Let’s now see why the worst-case running time of I NSERTION-SORT is �.n 2 /.

For a value to end up to the right of where it started, it must have been moved in
line 6. In fact, for a value to end up k positions to the right of where it started,
line 6 must have executed k times. As Figure 3.1 shows, let’s assume that n is
a multiple of 3 so that we can divide the array A into groups of n=3 positions.
Suppose that in the input to I NSERTION-SORT, the n=3 largest values occupy the
ûrst n=3 array positions AŒ1 W n=3�. (It does not matter what relative order they
have within the ûrst n=3 positions.) Once the array has been sorted, each of these
n=3 values ends up somewhere in the last n=3 positions AŒ2n=3 C 1 W n�. For that
to happen, each of these n=3 values must pass through each of the middle n=3
positions AŒn=3 C 1 W 2n=3�. Each of these n=3 values passes through these middle

3.2 Asymptotic notation: formal definitions 53

n=3 positions one position at a time, by at least n=3 executions of line 6. Because
at least n=3 values have to pass through at least n=3 positions, the time taken by
I NSERTION-SORT in the worst case is at least proportional to .n=3/.n=3/ D n 2 =9,
which is �.n 2 /.

Because we have shown that I NSERTION-SORT runs in O.n 2 / time in all cases
and that there is an input that makes it take �.n 2 / time, we can conclude that the
worst-case running time of I NSERTION-SORT is ‚.n 2 /. It does not matter that
the constant factors for upper and lower bounds might differ. What matters is
that we have characterized the worst-case running time to within constant factors
(discounting lower-order terms). This argument does not show that I NSERTION-
SORT runs in ‚.n 2 / time in all cases. Indeed, we saw in Chapter 2 that the best-
case running time is ‚.n/.

Exercises
3.1-1
Modify the lower-bound argument for insertion sort to handle input sizes that are
not necessarily a multiple of 3.
3.1-2
Using reasoning similar to what we used for insertion sort, analyze the running
time of the selection sort algorithm from Exercise 2.2-2.
3.1-3
Suppose that ˛ is a fraction in the range 0 < ˛ < 1. Show how to generalize
the lower-bound argument for insertion sort to consider an input in which the ˛n
largest values start in the ûrst ˛n positions. What additional restriction do you
need to put on ˛? What value of ˛ maximizes the number of times that the ˛n
largest values must pass through each of the middle .1  2˛/n array positions?

3.2 Asymptotic notation: formal deûnitions

Having seen asymptotic notation informally, let’s get more formal. The notations
we use to describe the asymptotic running time of an algorithm are deûned in
terms of functions whose domains are typically the set N of natural numbers or
the set R of real numbers. Such notations are convenient for describing a running-
time function T .n/. This section deûnes the basic asymptotic notations and also
introduces some common <proper= notational abuses.

54 Chapter 3 Characterizing Running Times

(a) (b) (c)

n n n
n 0 n 0 n 0

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n//

f .n/

f .n/
f .n/

cg.n/

cg.n/

c 1 g.n/

c 2 g.n/

Figure 3.2 Graphic examples of the O , �, and ‚ notations. In each part, the value of n 0 shown
is the minimum possible value, but any greater value also works. (a) O-notation gives an upper
bound for a function to within a constant factor. We write f .n/ D O.g.n// if there are positive
constants n 0 and c such that at and to the right of n 0 , the value of f .n/ always lies on or be-
low cg.n/. (b) �-notation gives a lower bound for a function to within a constant factor. We write
f .n/ D �.g.n// if there are positive constants n 0 and c such that at and to the right of n 0 , the value
of f .n/ always lies on or above cg.n/. (c) ‚-notation bounds a function to within constant factors.
We write f .n/ D ‚.g.n// if there exist positive constants n 0 , c 1 , and c 2 such that at and to the right
of n 0 , the value of f .n/ always lies between c 1 g.n/ and c 2 g.n/ inclusive.

O-notation

As we saw in Section 3.1, O-notation describes an asymptotic upper bound. We
use O-notation to give an upper bound on a function, to within a constant factor.
Here is the formal deûnition of O-notation. For a given function g.n/, we denote

by O.g.n// (pronounced <big-oh of g of n= or sometimes just <oh of g of n=) the
set of functions
O.g.n// D ff .n/ W there exist positive constants c and n 0 such that

0 හ f .n/ හ cg.n/ for all n  n 0 g : 1

A function f .n/ belongs to the set O.g.n// if there exists a positive constant c such
that f .n/ හ cg.n/ for sufûciently large n. Figure 3.2(a) shows the intuition behind
O-notation. For all values n at and to the right of n 0 , the value of the function f .n/
is on or below cg.n/.
The deûnition of O.g.n// requires that every function f .n/ in the set O.g.n//

be asymptotically nonnegative: f .n/ must be nonnegative whenever n is sufû-
ciently large. (An asymptotically positive function is one that is positive for all

1 Within set notation, a colon means <such that.=

3.2 Asymptotic notation: formal definitions 55

sufûciently large n.) Consequently, the function g.n/ itself must be asymptotically
nonnegative, or else the set O.g.n// is empty. We therefore assume that every
function used within O-notation is asymptotically nonnegative. This assumption
holds for the other asymptotic notations deûned in this chapter as well.
You might be surprised that we deûne O-notation in terms of sets. Indeed, you

might expect that we would write <f .n/ 2 O.g.n//= to indicate that f .n/ be-
longs to the set O.g.n//. Instead, we usually write <f .n/ D O.g.n//= and say
<f .n/ is big-oh of g.n/= to express the same notion. Although it may seem con-
fusing at ûrst to abuse equality in this way, we’ll see later in this section that doing
so has its advantages.
Let’s explore an example of how to use the formal deûnition of O-notation to

justify our practice of discarding lower-order terms and ignoring the constant coef-
ûcient of the highest-order term. We’ll show that 4n 2 C100n C500 D O.n 2 /, even
though the lower-order terms have much larger coefûcients than the leading term.
We need to ûnd positive constants c and n 0 such that 4n 2 C 100n C 500 හ cn 2

for all n  n 0 . Dividing both sides by n 2 gives 4 C 100=n C 500=n 2 හ c . This
inequality is satisûed for many choices of c and n 0 . For example, if we choose
n 0 D 1, then this inequality holds for c D 604. If we choose n 0 D 10, then c D 19
works, and choosing n 0 D 100 allows us to use c D 5:05.
We can also use the formal deûnition of O-notation to show that the function

n 3  100n 2 does not belong to the set O.n 2 /, even though the coefûcient of n 2

is a large negative number. If we had n 3  100n 2 D O.n 2 /, then there would be
positive constants c and n 0 such that n 3  100n 2 හ cn 2 for all n  n 0 . Again, we
divide both sides by n 2 , giving n  100 හ c . Regardless of what value we choose
for the constant c , this inequality does not hold for any value of n > c C 100.

-notation

Just as O-notation provides an asymptotic upper bound on a function, �-notation
provides an asymptotic lower bound. For a given function g.n/, we denote
by �.g.n// (pronounced <big-omega of g of n= or sometimes just <omega of g
of n=) the set of functions
�.g.n// D ff .n/ W there exist positive constants c and n 0 such that

0 හ cg.n/ හ f .n/ for all n  n 0 g :

Figure 3.2(b) shows the intuition behind �-notation. For all values n at or to the
right of n 0 , the value of f .n/ is on or above cg.n/.
We’ve already shown that 4n 2 C 100n C 500 D O.n 2 /. Now let’s show that

4n 2 C 100n C 500 D �.n 2 /. We need to ûnd positive constants c and n 0 such that
4n 2 C 100n C 500  cn 2 for all n  n 0 . As before, we divide both sides by n 2 ,

56 Chapter 3 Characterizing Running Times

giving 4 C 100=n C 500=n 2  c . This inequality holds when n 0 is any positive
integer and c D 4.
What if we had subtracted the lower-order terms from the 4n 2 term instead of

adding them? What if we had a small coefûcient for the n 2 term? The function
would still be �.n 2 /. For example, let’s show that n 2 =100  100n  500 D �.n 2 /.
Dividing by n 2 gives 1=100  100=n  500=n 2  c . We can choose any value
for n 0 that is at least 10,005 and ûnd a positive value for c . For example, when
n 0 D 10,005, we can choose c D 2:49  10 9 . Yes, that’s a tiny value for c , but it
is positive. If we select a larger value for n 0 , we can also increase c . For example,
if n 0 D 100,000, then we can choose c D 0:0089. The higher the value of n 0 , the
closer to the coefûcient 1=100 we can choose c .

‚-notation

We use ‚-notation for asymptotically tight bounds. For a given function g.n/, we
denote by ‚.g.n// (<theta of g of n=) the set of functions
‚.g.n// D ff .n/ W there exist positive constants c 1 , c 2 , and n 0 such that

0 හ c 1 g.n/ හ f .n/ හ c 2 g.n/ for all n  n 0 g :

Figure 3.2(c) shows the intuition behind ‚-notation. For all values of n at and to
the right of n 0 , the value of f .n/ lies at or above c 1 g.n/ and at or below c 2 g.n/. In
other words, for all n  n 0 , the function f .n/ is equal to g.n/ to within constant
factors.
The deûnitions of O-, �-, and ‚-notations lead to the following theorem, whose

proof we leave as Exercise 3.2-4.

Theorem 3.1
For any two functions f .n/ and g.n/, we have f .n/ D ‚.g.n// if and only if
f .n/ D O.g.n// and f .n/ D �.g.n//.
We typically apply Theorem 3.1 to prove asymptotically tight bounds from asymp-
totic upper and lower bounds.

Asymptotic notation and running times
When you use asymptotic notation to characterize an algorithm’s running time,
make sure that the asymptotic notation you use is as precise as possible without
overstating which running time it applies to. Here are some examples of using
asymptotic notation properly and improperly to characterize running times.
Let’s start with insertion sort. We can correctly say that insertion sort’s worst-

case running time is O.n 2 /, �.n 2 /, and4due to Theorem 3.14‚.n 2 /. Although

3.2 Asymptotic notation: formal definitions 57

all three ways to characterize the worst-case running times are correct, the ‚.n 2 /
bound is the most precise and hence the most preferred. We can also correctly say
that insertion sort’s best-case running time is O.n/, �.n/, and ‚.n/, again with
‚.n/ the most precise and therefore the most preferred.

Here is what we cannot correctly say: insertion sort’s running time is ‚.n 2 /.
That is an overstatement because by omitting <worst-case= from the statement,
we’re left with a blanket statement covering all cases. The error here is that inser-
tion sort does not run in ‚.n 2 / time in all cases since, as we’ve seen, it runs in
‚.n/ time in the best case. We can correctly say that insertion sort’s running time
is O.n 2 /, however, because in all cases, its running time grows no faster than n 2 .
When we say O.n 2 / instead of ‚.n 2 /, there is no problem in having cases whose
running time grows more slowly than n 2 . Likewise, we cannot correctly say that
insertion sort’s running time is ‚.n/, but we can say that its running time is �.n/.
How about merge sort? Since merge sort runs in ‚.n lg n/ time in all cases,

we can just say that its running time is ‚.n lg n/ without specifying worst-case,
best-case, or any other case.
People occasionally conüate O-notation with ‚-notation by mistakenly using

O-notation to indicate an asymptotically tight bound. They say things like <an
O.n lg n/-time algorithm runs faster than an O.n 2 /-time algorithm.= Maybe it
does, maybe it doesn’t. Since O-notation denotes only an asymptotic upper bound,
that so-called O.n 2 /-time algorithm might actually run in ‚.n/ time. You should
be careful to choose the appropriate asymptotic notation. If you want to indicate
an asymptotically tight bound, use ‚-notation.

We typically use asymptotic notation to provide the simplest and most precise
bounds possible. For example, if an algorithm has a running time of 3n 2 C 20n
in all cases, we use asymptotic notation to write that its running time is ‚.n 2 /.
Strictly speaking, we are also correct in writing that the running time is O.n 3 / or
‚.3n 2 C 20n/. Neither of these expressions is as useful as writing ‚.n 2 / in this
case, however: O.n 3 / is less precise than ‚.n 2 / if the running time is 3n 2 C 20n,
and ‚.3n 2 C 20n/ introduces complexity that obscures the order of growth. By
writing the simplest and most precise bound, such as ‚.n 2 /, we can categorize
and compare different algorithms. Throughout the book, you will see asymptotic
running times that are almost always based on polynomials and logarithms: func-
tions such as n, n lg 2 n, n 2 lg n, or n 1=2 . You will also see some other functions,
such as exponentials, lg lg n, and lg  n (see Section 3.3). It is usually fairly easy
to compare the rates of growth of these functions. Problem 3-3 gives you good
practice.

58 Chapter 3 Characterizing Running Times

Asymptotic notation in equations and inequalities
Although we formally deûne asymptotic notation in terms of sets, we use the equal
sign (D) instead of the set membership sign (2) within formulas. For example, we
wrote that 4n 2 C 100n C 500 D O.n 2 /. We might also write 2n 2 C 3n C 1 D
2n 2 C ‚.n/. How do we interpret such formulas?

When the asymptotic notation stands alone (that is, not within a larger formula)
on the right-hand side of an equation (or inequality), as in 4n 2 C 100n C 500 D
O.n 2 /, the equal sign means set membership: 4n 2 C 100n C 500 2 O.n 2 /. In
general, however, when asymptotic notation appears in a formula, we interpret it as
standing for some anonymous function that we do not care to name. For example,
the formula 2n 2 C 3n C 1 D 2n 2 C ‚.n/ means that 2n 2 C 3n C 1 D 2n 2 C f .n/,
where f .n/ 2 ‚.n/. In this case, we let f .n/ D 3n C 1, which indeed belongs
to ‚.n/.

Using asymptotic notation in this manner can help eliminate inessential detail
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case
running time of merge sort as the recurrence
T .n/ D 2T .n=2/ C ‚.n/ :

If we are interested only in the asymptotic behavior of T .n/, there is no point in
specifying all the lower-order terms exactly, because they are all understood to be
included in the anonymous function denoted by the term ‚.n/.

The number of anonymous functions in an expression is understood to be equal
to the number of times the asymptotic notation appears. For example, in the ex-
pression
n X

i D1

O.i/ ;

there is only a single anonymous function (a function of i). This expression is thus
not the same as O.1/ C O.2/ C    C O.n/, which doesn’t really have a clean
interpretation.
In some cases, asymptotic notation appears on the left-hand side of an equation,

as in
2n 2 C ‚.n/ D ‚.n 2 / :

Interpret such equations using the following rule: No matter how the anonymous
functions are chosen on the left of the equal sign, there is a way to choose the
anonymous functions on the right of the equal sign to make the equation valid.
Thus, our example means that for any function f .n/ 2 ‚.n/, there is some function
g.n/ 2 ‚.n 2 / such that 2n 2 Cf .n/ D g.n/ for all n. In other words, the right-hand
side of an equation provides a coarser level of detail than the left-hand side.

3.2 Asymptotic notation: formal definitions 59

We can chain together a number of such relationships, as in
2n 2 C 3n C 1 D 2n 2 C ‚.n/

D ‚.n 2 / :

By the rules above, interpret each equation separately. The ûrst equation says that
there is some function f .n/ 2 ‚.n/ such that 2n 2 C3n C1 D 2n 2 C f .n/ for all n.
The second equation says that for any function g.n/ 2 ‚.n/ (such as the f .n/ just
mentioned), there is some function h.n/ 2 ‚.n 2 / such that 2n 2 C g.n/ D h.n/ for
all n. This interpretation implies that 2n 2 C 3n C 1 D ‚.n 2 /, which is what the
chaining of equations intuitively says.

Proper abuses of asymptotic notation

Besides the abuse of equality to mean set membership, which we now see has a
precise mathematical interpretation, another abuse of asymptotic notation occurs
when the variable tending toward 1 must be inferred from context. For example,
when we say O.g.n//, we can assume that we’re interested in the growth of g.n/
as n grows, and if we say O.g.m// we’re talking about the growth of g.m/ as m
grows. The free variable in the expression indicates what variable is going to 1.

The most common situation requiring contextual knowledge of which variable
tends to 1 occurs when the function inside the asymptotic notation is a constant,
as in the expression O.1/. We cannot infer from the expression which variable is
going to 1, because no variable appears there. The context must disambiguate. For
example, if the equation using asymptotic notation is f .n/ D O.1/, it’s apparent
that the variable we’re interested in is n. Knowing from context that the variable of
interest is n, however, allows us to make perfect sense of the expression by using
the formal deûnition of O-notation: the expression f .n/ D O.1/ means that the
function f .n/ is bounded from above by a constant as n goes to 1. Technically, it
might be less ambiguous if we explicitly indicated the variable tending to 1 in the
asymptotic notation itself, but that would clutter the notation. Instead, we simply
ensure that the context makes it clear which variable (or variables) tend to 1.

When the function inside the asymptotic notation is bounded by a positive con-
stant, as in T .n/ D O.1/, we often abuse asymptotic notation in yet another way,
especially when stating recurrences. We may write something like T .n/ D O.1/
for n < 3. According to the formal deûnition of O-notation, this statement is
meaningless, because the deûnition only says that T .n/ is bounded above by a
positive constant c for n  n 0 for some n 0 > 0. The value of T .n/ for n < n 0
need not be so bounded. Thus, in the example T .n/ D O.1/ for n < 3, we cannot
infer any constraint on T .n/ when n < 3, because it might be that n 0 > 3.

What is conventionally meant when we say T .n/ D O.1/ for n < 3 is that there
exists a positive constant c such that T .n/ හ c for n < 3. This convention saves

60 Chapter 3 Characterizing Running Times

us the trouble of naming the bounding constant, allowing it to remain anonymous
while we focus on more important variables in an analysis. Similar abuses occur
with the other asymptotic notations. For example, T .n/ D ‚.1/ for n < 3 means
that T .n/ is bounded above and below by positive constants when n < 3.
Occasionally, the function describing an algorithm’s running time may not be

deûned for certain input sizes, for example, when an algorithm assumes that the
input size is an exact power of 2. We still use asymptotic notation to describe the
growth of the running time, understanding that any constraints apply only when
the function is deûned. For example, suppose that f .n/ is deûned only on a subset
of the natural or nonnegative real numbers. Then f .n/ D O.g.n// means that the
bound 0 හ T .n/ හ cg.n/ in the deûnition of O-notation holds for all n  n 0 over
the domain of f .n/, that is, where f .n/ is deûned. This abuse is rarely pointed
out, since what is meant is generally clear from context.
In mathematics, it’s okay4and often desirable4to abuse a notation, as long as

we don’t misuse it. If we understand precisely what is meant by the abuse and don’t
draw incorrect conclusions, it can simplify our mathematical language, contribute
to our higher-level understanding, and help us focus on what really matters.

o-notation

The asymptotic upper bound provided by O-notation may or may not be asymp-
totically tight. The bound 2n 2 D O.n 2 / is asymptotically tight, but the bound
2n D O.n 2 / is not. We use o-notation to denote an upper bound that is not asymp-
totically tight. We formally deûne o.g.n// (<little-oh of g of n=) as the set
o.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant

n 0 > 0 such that 0 හ f .n/ < cg.n/ for all n  n 0 g :

For example, 2n D o.n 2 /, but 2n 2 ¤ o.n 2 /.
The deûnitions of O-notation and o-notation are similar. The main difference

is that in f .n/ D O.g.n//, the bound 0 හ f .n/ හ cg.n/ holds for some con-
stant c > 0, but in f .n/ D o.g.n//, the bound 0 හ f .n/ < cg.n/ holds for all
constants c > 0. Intuitively, in o-notation, the function f .n/ becomes insigniûcant
relative to g.n/ as n gets large:

lim
n!1

f .n/
g.n/

D 0 :

Some authors use this limit as a deûnition of the o-notation, but the deûnition in
this book also restricts the anonymous functions to be asymptotically nonnegative.

3.2 Asymptotic notation: formal definitions 61

!-notation

By analogy, !-notation is to �-notation as o-notation is to O-notation. We use
!-notation to denote a lower bound that is not asymptotically tight. One way to
deûne it is by

f .n/ 2 !.g.n// if and only if g.n/ 2 o.f .n// :

Formally, however, we deûne !.g.n// (<little-omega of g of n=) as the set
!.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant

n 0 > 0 such that 0 හ cg.n/ < f .n/ for all n  n 0 g :

Where the deûnition of o-notation says that f .n/ < cg.n/ , the deûnition of
!-notation says the opposite: that cg.n/ < f .n/ . For examples of !-notation,
we have n 2 =2 D !.n/, but n 2 =2 ¤ !.n 2 /. The relation f .n/ D !.g.n// implies
that
lim
n!1

f .n/
g.n/

D 1 ;

if the limit exists. That is, f .n/ becomes arbitrarily large relative to g.n/ as n gets
large.

Comparing functions
Many of the relational properties of real numbers apply to asymptotic comparisons
as well. For the following, assume that f .n/ and g.n/ are asymptotically positive.
Transitivity:
f .n/ D ‚.g.n// and g.n/ D ‚.h.n// imply f .n/ D ‚.h.n// ;
f .n/ D O.g.n// and g.n/ D O.h.n// imply f .n/ D O.h.n// ;
f .n/ D �.g.n// and g.n/ D �.h.n// imply f .n/ D �.h.n// ;
f .n/ D o.g.n// and g.n/ D o.h.n// imply f .n/ D o.h.n// ;
f .n/ D !.g.n// and g.n/ D !.h.n// imply f .n/ D !.h.n// :

Reüexivity:
f .n/ D ‚.f .n// ;
f .n/ D O.f .n// ;
f .n/ D �.f .n// :

Symmetry:
f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n// :

62 Chapter 3 Characterizing Running Times

Transpose symmetry:
f .n/ D O.g.n// if and only if g.n/ D �.f .n// ;
f .n/ D o.g.n// if and only if g.n/ D !.f .n// :

Because these properties hold for asymptotic notations, we can draw an analogy
between the asymptotic comparison of two functions f and g and the comparison
of two real numbers a and b:
f .n/ D O.g.n// is like a හ b ;
f .n/ D �.g.n// is like a  b ;
f .n/ D ‚.g.n// is like a D b ;
f .n/ D o.g.n// is like a < b ;
f .n/ D !.g.n// is like a > b :
We say that f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//, and f .n/
is asymptotically larger than g.n/ if f .n/ D !.g.n//.
One property of real numbers, however, does not carry over to asymptotic nota-

tion:
Trichotomy: For any two real numbers a and b, exactly one of the following

must hold: a < b, a D b, or a > b.
Although any two real numbers can be compared, not all functions are asymptot-
ically comparable. That is, for two functions f .n/ and g.n/, it may be the case
that neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. For example, we cannot
compare the functions n and n 1Csin n using asymptotic notation, since the value of
the exponent in n 1Csin n oscillates between 0 and 2, taking on all values in between.

Exercises
3.2-1
Let f .n/ and g.n/ be asymptotically nonnegative functions. Using the basic deû-
nition of ‚-notation, prove that max ff .n/; g.n/g D ‚.f .n/ C g.n//.
3.2-2
Explain why the statement, <The running time of algorithm A is at least O.n 2 /,= is
meaningless.
3.2-3
Is 2 nC1 D O.2 n /? Is 2 2n D O.2 n /?
3.2-4
Prove Theorem 3.1.

3.3 Standard notations and common functions 63

3.2-5
Prove that the running time of an algorithm is ‚.g.n// if and only if its worst-case
running time is O.g.n// and its best-case running time is �.g.n//.
3.2-6
Prove that o.g.n// \ !.g.n// is the empty set.
3.2-7
We can extend our notation to the case of two parameters n and m that can go to
1 independently at different rates. For a given function g.n;m/, we denote by
O.g.n;m// the set of functions
O.g.n;m// D ff .n;m/ W there exist positive constants c , n 0 , and m 0

such that 0 හ f .n;m/ හ cg.n;m/
for all n  n 0 or m  m 0 g :

Give corresponding deûnitions for �.g.n; m// and ‚.g.n;m//.

3.3 Standard notations and common functions

This section reviews some standard mathematical functions and notations and ex-
plores the relationships among them. It also illustrates the use of the asymptotic
notations.

Monotonicity

A function f .n/ is monotonically increasing if m හ n implies f .m/ හ f .n/.
Similarly, it is monotonically decreasing if m හ n implies f .m/  f .n/. A func-
tion f .n/ is strictly increasing if m < n implies f .m/ < f .n/ and strictly de-
creasing if m < n implies f .m/ > f .n/.

Floors and ceilings
For any real number x , we denote the greatest integer less than or equal to x by bx c
(read <the üoor of x =) and the least integer greater than or equal to x by dx e (read
<the ceiling of x =). The üoor function is monotonically increasing, as is the ceiling
function.

Floors and ceilings obey the following properties. For any integer n, we have
bnc D n D dne : (3.1)
For all real x , we have

64 Chapter 3 Characterizing Running Times

x  1 < bx c හ x හ dx e < x C 1 : (3.2)
We also have
 bx c D dx e ; (3.3)
or equivalently,
 dx e D bx c : (3.4)
For any real number x  0 and integers a; b > 0, we have å dx=ae

b

æ
D
å
x
ab

æ
; (3.5) ç bx=ac

b

è
D
ç
x
ab

è
; (3.6) å

a
b

æ
හ
a C .b  1/

b
; (3.7) ç

a
b

è

a  .b  1/

b
: (3.8)

For any integer n and real number x , we have
bn C x c D n C bx c ; (3.9)
dn C x e D n C dx e : (3.10)

Modular arithmetic
For any integer a and any positive integer n, the value a mod n is the remainder
(or residue) of the quotient a=n:
a mod n D a  n ba=nc : (3.11)
It follows that
0 හ a mod n < n ; (3.12)
even when a is negative.
Given a well-deûned notion of the remainder of one integer when divided by an-

other, it is convenient to provide special notation to indicate equality of remainders.
If .a mod n/ D .b mod n/, we write a D b .mod n/ and say that a is equivalent
to b, modulo n. In other words, a D b .mod n/ if a and b have the same remain-
der when divided by n. Equivalently, a D b .mod n/ if and only if n is a divisor
of b  a. We write a ¤ b .mod n/ if a is not equivalent to b, modulo n.

3.3 Standard notations and common functions 65

Polynomials
Given a nonnegative integer d , a polynomial in n of degree d is a function p.n/
of the form

p.n/ D
d X

i D0

a i n i ;

where the constants a 0 ; a 1 ; : : : ; a d are the coefficients of the polynomial and
a d ¤ 0. A polynomial is asymptotically positive if and only if a d > 0. For an
asymptotically positive polynomial p.n/ of degree d , we have p.n/ D ‚.n d /. For
any real constant a  0, the function n a is monotonically increasing, and for any
real constant a හ 0, the function n a is monotonically decreasing. We say that a
function f .n/ is polynomially bounded if f .n/ D O.n k / for some constant k.

Exponentials
For all real a > 0, m, and n, we have the following identities:
a 0 D 1 ;
a 1 D a ;
a 1 D 1=a ;

.a m / n D a mn ;

.a m / n D .a n / m ;
a m a n D a mCn :

For all n and a  1, the function a n is monotonically increasing in n. When
convenient, we assume that 0 0 D 1.

We can relate the rates of growth of polynomials and exponentials by the fol-
lowing fact. For all real constants a > 1 and b, we have

lim
n!1

n b

a n D 0 ;

from which we can conclude that
n b D o.a n / : (3.13)
Thus, any exponential function with a base strictly greater than 1 grows faster than
any polynomial function.

Using e to denote 2:71828 : : :, the base of the natural-logarithm function, we
have for all real x ,

e x D 1 C x C
x 2

2Š
C
x 3

3Š
C    D

1 X

i D0

x i

i Š
;

66 Chapter 3 Characterizing Running Times

where <Š= denotes the factorial function deûned later in this section. For all real x ,
we have the inequality
1 C x හ e x ; (3.14)
where equality holds only when x D 0. When jx j හ 1, we have the approximation
1 C x හ e x හ 1 C x C x 2 : (3.15)
When x ! 0, the approximation of e x by 1 C x is quite good:
e x D 1 C x C ‚.x 2 / :

(In this equation, the asymptotic notation is used to describe the limiting behavior
as x ! 0 rather than as x ! 1.) We have for all x ,
lim
n!1


1 C

x
n

Í n
D e x : (3.16)

Logarithms
We use the following notations:

lg n D log 2 n (binary logarithm) ,
ln n D log e n (natural logarithm) ,

lg k n D .lg n/ k (exponentiation) ,
lg lg n D lg.lg n/ (composition) .
We adopt the following notational convention: in the absence of parentheses, a
logarithm function applies only to the next term in the formula, so that lg n C 1
means .lg n/ C 1 and not lg.n C 1/.

For any constant b > 1, the function log b n is undeûned if n හ 0, strictly
increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if n D 1. For
all real a > 0, b > 0, c > 0, and n, we have

a D b log b a ; (3.17)
log c .ab/ D log c a C log c b ; (3.18)

log b a n D n log b a ;

log b a D
log c a
log c b

; (3.19)
log b .1=a/ D  log b a ; (3.20)

log b a D
1

log a b
;

a log b c D c log b a ; (3.21)
where, in each equation above, logarithm bases are not 1.

3.3 Standard notations and common functions 67

By equation (3.19), changing the base of a logarithm from one constant to an-
other changes the value of the logarithm by only a constant factor. Consequently,
we often use the notation <lg n= when we don’t care about constant factors, such
as in O-notation. Computer scientists ûnd 2 to be the most natural base for loga-
rithms because so many algorithms and data structures involve splitting a problem
into two parts.

There is a simple series expansion for ln.1 C x/ when jx j < 1:

ln.1 C x/ D x 
x 2

2
C
x 3

3

x 4

4
C
x 5

5
    : (3.22)

We also have the following inequalities for x > 1:
x

1 C x
හ ln.1 C x/ හ x ; (3.23)

where equality holds only for x D 0.
We say that a function f .n/ is polylogarithmically bounded if f .n/ D O.lg k n/

for some constant k. We can relate the growth of polynomials and polylogarithms
by substituting lg n for n and 2 a for a in equation (3.13). For all real constants
a > 0 and b, we have
lg b n D o.n a / : (3.24)
Thus, any positive polynomial function grows faster than any polylogarithmic func-
tion.

Factorials
The notation nŠ (read <n factorial=) is deûned for integers n  0 as

nŠ D

(
1 if n D 0 ;
n  .n  1/Š if n > 0 :

Thus, nŠ D 1  2  3    n.
A weak upper bound on the factorial function is nŠ හ n n , since each of the n

terms in the factorial product is at most n. Stirling’s approximation,

nŠ D
p
2�n

 n
e

Í n
Î
1 C ‚

Î
1
n

ÏÏ
; (3.25)

where e is the base of the natural logarithm, gives us a tighter upper bound, and a
lower bound as well. Exercise 3.3-4 asks you to prove the three facts

nŠ D o.n n / ; (3.26)
nŠ D !.2 n / ; (3.27)

lg.nŠ/ D ‚.n lg n/ ; (3.28)

68 Chapter 3 Characterizing Running Times

where Stirling’s approximation is helpful in proving equation (3.28). The following
equation also holds for all n  1:

nŠ D
p
2�n

 n
e

Í n
e ˛ n (3.29)

where
1

12n C 1
< ˛ n <

1
12n

:

Functional iteration

We use the notation f .i/ .n/ to denote the function f .n/ iteratively applied i times
to an initial value of n. Formally, let f .n/ be a function over the reals. For non-
negative integers i , we recursively deûne

f .i/ .n/ D

(
n if i D 0 ;
f .f .i 1/ .n// if i > 0 : (3.30)

For example, if f .n/ D 2n, then f .i/ .n/ D 2 i n.

The iterated logarithm function

We use the notation lg  n (read <log star of n=) to denote the iterated logarithm, de-
ûned as follows. Let lg .i/ n be as deûned above, with f .n/ D lg n. Because the log-
arithm of a nonpositive number is undeûned, lg .i/ n is deûned only if lg .i 1/ n > 0.
Be sure to distinguish lg .i/ n (the logarithm function applied i times in succession,
starting with argument n) from lg i n (the logarithm of n raised to the i th power).
Then we deûne the iterated logarithm function as
lg  n D min ̊

i  0 W lg .i/ n හ 1

:

The iterated logarithm is a very slowly growing function:
lg  2 D 1 ;
lg  4 D 2 ;

lg  16 D 3 ;
lg  65536 D 4 ;

lg  .2 65536 / D 5 :

Since the number of atoms in the observable universe is estimated to be about 10 80 ,
which is much less than 2 65536 D 10 65536= lg 10  10 19;728 , we rarely encounter an
input size n for which lg  n > 5.

3.3 Standard notations and common functions 69

Fibonacci numbers
We deûne the Fibonacci numbers F i , for i  0, as follows:

F i D

Ĩ
0 if i D 0 ;
1 if i D 1 ;
F i 1 C F i 2 if i  2 :

(3.31)

Thus, after the ûrst two, each Fibonacci number is the sum of the two previous
ones, yielding the sequence
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : :

Fibonacci numbers are related to the golden ratio � and its conjugate y � , which are
the two roots of the equation
x 2 D x C 1 :

As Exercise 3.3-7 asks you to prove, the golden ratio is given by

� D
1 C

p
5

2
(3.32)

D 1:61803 : : : ;

and its conjugate, by

y � D
1 

p
5

2
(3.33)

D :61803 : : : :
Speciûcally, we have

F i D
� i  y � i p

5
;

which can be proved by induction (Exercise 3.3-8). Since
ˇ ˇ y � ̌

 ˇ < 1, we have ˇ ˇ y � i ̌
 ˇ

p
5
<

1 p
5

<
1
2
;

which implies that

F i D
ç
� i p
5

C
1
2

è
; (3.34)

which is to say that the i th Fibonacci number F i is equal to � i =
p
5 rounded to the

nearest integer. Thus, Fibonacci numbers grow exponentially.

70 Chapter 3 Characterizing Running Times

Exercises
3.3-1
Show that if f .n/ and g.n/ are monotonically increasing functions, then so are
the functions f .n/ C g.n/ and f .g.n//, and if f .n/ and g.n/ are in addition
nonnegative, then f .n/  g.n/ is monotonically increasing.
3.3-2
Prove that b˛ncCd.1  ˛/ne D n for any integer n and real number ˛ in the range
0 හ ˛ හ 1.
3.3-3
Use equation (3.14) or other means to show that .n C o.n// k D ‚.n k / for any real
constant k. Conclude that dne k D ‚.n k / and bnc k D ‚.n k /.
3.3-4
Prove the following:
a. Equation (3.21).
b. Equations (3.26)3(3.28).
c. lg.‚.n// D ‚.lg n/.

? 3.3-5
Is the function dlg neŠ polynomially bounded? Is the function dlg lg neŠ polynomi-
ally bounded?

? 3.3-6
Which is asymptotically larger: lg.lg  n/ or lg  .lg n/?
3.3-7
Show that the golden ratio � and its conjugate y � both satisfy the equation
x 2 D x C 1.
3.3-8
Prove by induction that the i th Fibonacci number satisûes the equation

F i D .� i  y � i /=
p
5 ;

where � is the golden ratio and y � is its conjugate.
3.3-9
Show that k lg k D ‚.n/ implies k D ‚.n= lg n/.

Problems for Chapter 3 71

Problems

3-1 Asymptotic behavior of polynomials
Let

p.n/ D
d X

i D0

a i n i ;

where a d > 0, be a degree-d polynomial in n, and let k be a constant. Use the
deûnitions of the asymptotic notations to prove the following properties.
a. If k  d , then p.n/ D O.n k /.
b. If k හ d , then p.n/ D �.n k /.

c. If k D d , then p.n/ D ‚.n k /.
d. If k > d , then p.n/ D o.n k /.

e. If k < d , then p.n/ D !.n k /.

3-2 Relative asymptotic growths
Indicate, for each pair of expressions .A;B/ in the table below whether A is O , o,
�, !, or ‚ of B . Assume that k  1, � > 0, and c > 1 are constants. Write your
answer in the form of the table with <yes= or <no= written in each box.

A B O o � ! ‚
a. lg k n n 

b. n k c n

c. p
n n sin n

d. 2 n 2 n=2

e. n lg c c lg n

f. lg.nŠ/ lg.n n /

3-3 Ordering by asymptotic growth rates
a. Rank the following functions by order of growth. That is, ûnd an arrange-

ment g 1 ; g 2 ; : : : ; g 30 of the functions satisfying g 1 D �.g 2 /, g 2 D �.g 3 /, . . . ,
g 29 D �.g 30 /. Partition your list into equivalence classes such that functions
f .n/ and g.n/ belong to the same class if and only if f .n/ D ‚.g.n//.

72 Chapter 3 Characterizing Running Times

lg.lg  n/ 2 lg  n .
p
2/ lg n n 2 nŠ .lg n/Š

.3=2/ n n 3 lg 2 n lg.nŠ/ 2 2 n
n 1= lg n

ln ln n lg  n n  2 n n lg lg n ln n 1

2 lg n .lg n/ lg n e n 4 lg n .n C 1/Š
p lg n

lg  .lg n/ 2
p
2 lg n n 2 n n lg n 2 2 nC1

b. Give an example of a single nonnegative function f .n/ such that for all func-
tions g i .n/ in part (a), f .n/ is neither O.g i .n// nor �.g i .n//.

3-4 Asymptotic notation properties
Let f .n/ and g.n/ be asymptotically positive functions. Prove or disprove each of
the following conjectures.
a. f .n/ D O.g.n// implies g.n/ D O.f .n//.

b. f .n/ C g.n/ D ‚.min ff .n/; g.n/g/.

c. f .n/ D O.g.n// implies lg f .n/ D O.lg g.n//, where lg g.n/  1 and
f .n/  1 for all sufûciently large n.

d. f .n/ D O.g.n// implies 2 f .n/ D O
ã
2 g.n/

ä .
e. f .n/ D O ..f .n// 2 /.

f. f .n/ D O.g.n// implies g.n/ D �.f .n// .

g. f .n/ D ‚.f .n=2//.

h. f .n/ C o.f .n// D ‚.f .n//.

3-5 Manipulating asymptotic notation
Let f .n/ and g.n/ be asymptotically positive functions. Prove the following iden-
tities:
a. ‚.‚.f .n/// D ‚.f .n//.

b. ‚.f .n// C O.f .n// D ‚.f .n//.

c. ‚.f .n// C ‚.g.n// D ‚.f .n/ C g.n//.

d. ‚.f .n//  ‚.g.n// D ‚.f .n/  g.n//.

Problems for Chapter 3 73

e. Argue that for any real constants a 1 ; b 1 > 0 and integer constants k 1 ; k 2 , the
following asymptotic bound holds:

.a 1 n/ k 1 lg k 2 .a 2 n/ D ‚.n k 1 lg k 2 n/ :

? f. Prove that for S ෂ Z, we have
X

k2S

‚.f .k// D ‚

 X

k2S

f .k/

!

;

assuming that both sums converge.

? g. Show that for S ෂ Z, the following asymptotic bound does not necessarily
hold, even assuming that both products converge, by giving a counterexample:

Y

k2S

‚.f .k// D ‚

 Y

k2S

f .k/

!

:

3-6 Variations on O and ˝
Some authors deûne �-notation in a slightly different way than this textbook does.
We’ll use the nomenclature 1

� (read <omega inûnity=) for this alternative deûni-
tion. We say that f .n/ D

1
�.g.n// if there exists a positive constant c such that

f .n/  cg.n/  0 for inûnitely many integers n.
a. Show that for any two asymptotically nonnegative functions f .n/ and g.n/, we

have f .n/ D O.g.n// or f .n/ D
1
�.g.n// (or both).

b. Show that there exist two asymptotically nonnegative functions f .n/ and g.n/
for which neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds.

c. Describe the potential advantages and disadvantages of using 1
�-notation in-

stead of �-notation to characterize the running times of programs.
Some authors also deûne O in a slightly different manner. We’ll use O 0 for the
alternative deûnition: f .n/ D O 0 .g.n// if and only if jf .n/j D O.g.n//.
d. What happens to each direction of the <if and only if= in Theorem 3.1 on

page 56 if we substitute O 0 for O but still use �?
Some authors deûne e O (read <soft-oh=) to mean O with logarithmic factors ig-
nored:

74 Chapter 3 Characterizing Running Times

e O.g.n// D ff .n/ W there exist positive constants c , k, and n 0 such that
0 හ f .n/ හ cg.n/ lg k .n/ for all n  n 0 g :

e. Deûne e � and e ‚ in a similar manner. Prove the corresponding analog to Theo-
rem 3.1.

3-7 Iterated functions
We can apply the iteration operator  used in the lg  function to any monotonically
increasing function f .n/ over the reals. For a given constant c 2 R, we deûne the
iterated function f 

c by
f 
c .n/ D min ̊

i  0 W f .i/ .n/ හ c

;

which need not be well deûned in all cases. In other words, the quantity f 
c .n/ is

the minimum number of iterated applications of the function f required to reduce
its argument down to c or less.

For each of the functions f .n/ and constants c in the table below, give as tight
a bound as possible on f 

c .n/. If there is no i such that f .i/ .n/ හ c , write <unde-
ûned= as your answer.

f .n/ c f 
c .n/

a. n  1 0
b. lg n 1
c. n=2 1
d. n=2 2
e. p

n 2
f. p

n 1
g. n 1=3 2

Chapter notes

Knuth [259] traces the origin of the O-notation to a number-theory text by P. Bach-
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion
of the distribution of prime numbers. The � and ‚ notations were advocated by
Knuth [265] to correct the popular, but technically sloppy, practice in the litera-
ture of using O-notation for both upper and lower bounds. As noted earlier in
this chapter, many people continue to use the O-notation where the ‚-notation is
more technically precise. The soft-oh notation e O in Problem 3-6 was introduced

Notes for Chapter 3 75

by Babai, Luks, and Seress [31], although it was originally written as O. Some
authors now deûne e O.g.n// as ignoring factors that are logarithmic in g.n/, rather
than in n. With this deûnition, we can say that n2 n D e O.2 n /, but with the deû-
nition in Problem 3-6, this statement is not true. Further discussion of the history
and development of asymptotic notations appears in works by Knuth [259, 265]
and Brassard and Bratley [70].
Not all authors deûne the asymptotic notations in the same way, although the

various deûnitions agree in most common situations. Some of the alternative def-
initions encompass functions that are not asymptotically nonnegative, as long as
their absolute values are appropriately bounded.
Equation (3.29) is due to Robbins [381]. Other properties of elementary math-

ematical functions can be found in any good mathematical reference, such as
Abramowitz and Stegun [1] or Zwillinger [468], or in a calculus book, such as
Apostol [19] or Thomas et al. [433]. Knuth [259] and Graham, Knuth, and Patash-
nik [199] contain a wealth of material on discrete mathematics as used in computer
science.

