
3 Characterizing Running Times 

The order of growth of the running time of an algorithm, deûned in Chapter 2, 
gives a simple way to characterize the algorithm’s efûciency and also allows us 
to compare it with alternative algorithms. Once the input size n becomes large 
enough, merge sort, with its ‚.n lg n/ worst-case running time, beats insertion sort, 
whose worst-case running time is ‚.n 2 /. Although we can sometimes determine 
the exact running time of an algorithm, as we did for insertion sort in Chapter 2, 
the extra precision is rarely worth the effort of computing it. For large enough 
inputs, the multiplicative constants and lower-order terms of an exact running time 
are dominated by the effects of the input size itself. 

When we look at input sizes large enough to make relevant only the order of 
growth of the running time, we are studying the asymptotic efûciency of algo- 
rithms. That is, we are concerned with how the running time of an algorithm 
increases with the size of the input in the limit, as the size of the input increases 
without bound. Usually, an algorithm that is asymptotically more efûcient is the 
best choice for all but very small inputs. 

This chapter gives several standard methods for simplifying the asymptotic anal- 
ysis of algorithms. The next section presents informally the three most commonly 
used types of <asymptotic notation,= of which we have already seen an example 
in ‚-notation. It also shows one way to use these asymptotic notations to reason 
about the worst-case running time of insertion sort. Then we look at asymptotic 
notations more formally and present several notational con ventions used through- 
out this book. The last section reviews the behavior of functions that commonly 
arise when analyzing algorithms. 
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3.1 O-notation, -notation, and ‚-notation 

When we analyzed the worst-case running time of insertion sort in Chapter 2, we 
started with the complicated expression  c 5 
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We then discarded the lower-order terms .c 1 C c 2 C c 4 C c 5 =2  c 6 =2  c 7 =2 C c 8 /n 
and c 2 C c 4 C c 5 C c 8 , and we also ignored the coefûcient c 5 =2 C c 6 =2 C c 7 =2 
of n 2 . That left just the factor n 2 , which we put into ‚-notation as ‚.n 2 /. We 
use this style to characterize running times of algorithms: discard the lower-order 
terms and the coefûcient of the leading term, and use a notation that focuses on the 
rate of growth of the running time. 
‚-notation is not the only such <asymptotic notation.= In this section, we’ll 

see other forms of asymptotic notation as well. We start with intuitive looks at 
these notations, revisiting insertion sort to see how we can apply them. In the next 
section, we’ll see the formal deûnitions of our asymptotic notations, along with 
conventions for using them. 
Before we get into speciûcs, bear in mind that the asymptotic notations we’ll see 

are designed so that they characterize functions in general. It so happens that the 
functions we are most interested in denote the running times of algorithms. But 
asymptotic notation can apply to functions that characterize some other aspect of 
algorithms (the amount of space they use, for example), or even to functions that 
have nothing whatsoever to do with algorithms. 

O-notation 

O-notation characterizes an upper bound on the asymptotic behavior of a function. 
In other words, it says that a function grows no faster than a certain rate, based on 
the highest-order term. Consider, for example, the function 7n 3 C 100n 2  20n C 6. 
Its highest-order term is 7n 3 , and so we say that this function’s rate of growth is n 3 . 
Because this function grows no faster than n 3 , we can write that it is O.n 3 /. You 
might be surprised that we can also write that the function 7n 3 C 100n 2  20n C 6 
is O.n 4 /. Why? Because the function grows more slowly than n 4 , we are correct 
in saying that it grows no faster. As you might have guessed, this function is also 
O.n 5 /, O.n 6 /, and so on. More generally, it is O.n c / for any constant c  3. 
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-notation 

�-notation characterizes a lower bound on the asymptotic behavior of a function. 
In other words, it says that a function grows at least as fast as a certain rate, based 
4as in O-notation4on the highest-order term. Because the highest-order term 
in the function 7n 3 C 100n 2  20n C 6 grows at least as fast as n 3 , this function 
is �.n 3 /. This function is also �.n 2 / and �.n/. More generally, it is �.n c / for 
any constant c හ 3. 

‚-notation 

‚-notation characterizes a tight bound on the asymptotic behavior of a function. It 
says that a function grows precisely at a certain rate, based4once again4on the 
highest-order term. Put another way, ‚-notation characterizes the rate of growth of 
the function to within a constant factor from above and to within a constant factor 
from below. These two constant factors need not be equal. 

If you can show that a function is both O.f .n// and �.f .n// for some func- 
tion f .n/, then you have shown that the function is ‚.f .n//. (The next section 
states this fact as a theorem.) For example, since the function 7n 3 C100n 2 20nC6 
is both O.n 3 / and �.n 3 /, it is also ‚.n 3 /. 

Example: Insertion sort 
Let’s revisit insertion sort and see how to work with asymptotic notation to charac- 
terize its ‚.n 2 / worst-case running time without evaluating summations as we did 
in Chapter 2. Here is the I NSERTION-SORT procedure once again: 

I NSERTION-SORT .A; n/ 
1 for i D 2 to n 
2 key D AŒi� 
3 // Insert AŒi� into the sorted subarray AŒ1 W i  1�. 
4 j D i  1 
5 while j > 0 and AŒj � > key 
6 AŒj C 1� D AŒj � 
7 j D j  1 
8 AŒj C 1� D key 

What can we observe about how the pseudocode operates? The procedure has 
nested loops. The outer loop is a for loop that runs n  1 times, regardless of the 
values being sorted. The inner loop is a while loop, but the number of iterations 
it makes depends on the values being sorted. The loop variable j starts at i  1 
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each of the 
n/3 largest 

values moves 

through each 
of these 

n/3 positions 

to somewhere 
in these 

n/3 positions 

AŒ1 W n=3� AŒn=3 C 1 W 2n=3� AŒ2n=3 C 1 W n� 

Figure 3.1 The �.n 2 / lower bound for insertion sort. If the ûrst n=3 positions contain the n=3 
largest values, each of these values must move through each of the middle n=3 positions, one position 
at a time, to end up somewhere in the last n=3 positions. Since each of n=3 values moves through at 
least each of n=3 positions, the time taken in this case is at least proportional to .n=3/.n=3/ D n 2 =9, 
or �.n 2 /. 

and decreases by 1 in each iteration until either it reaches 0 or AŒj � හ key. For a 
given value of i , the while loop might iterate 0 times, i  1 times, or anywhere in 
between. The body of the while loop (lines 637) takes constant time per iteration 
of the while loop. 
These observations sufûce to deduce an O.n 2 / running time for any case of 

I NSERTION-SORT, giving us a blanket statement that covers all inputs. The run- 
ning time is dominated by the inner loop. Because each of the n  1 iterations of 
the outer loop causes the inner loop to iterate at most i  1 times, and because i is 
at most n, the total number of iterations of the inner loop is at most .n  1/.n  1/, 
which is less than n 2 . Since each iteration of the inner loop takes constant time, 
the total time spent in the inner loop is at most a constant times n 2 , or O.n 2 /. 
With a little creativity, we can also see that the worst-case running time of 

I NSERTION-SORT is �.n 2 /. By saying that the worst-case running time of an 
algorithm is �.n 2 /, we mean that for every input size n above a certain threshold, 
there is at least one input of size n for which the algorithm takes at least cn 2 time, 
for some positive constant c . It does not necessarily mean that the algorithm takes 
at least cn 2 time for all inputs. 
Let’s now see why the worst-case running time of I NSERTION-SORT is �.n 2 /. 

For a value to end up to the right of where it started, it must have been moved in 
line 6. In fact, for a value to end up k positions to the right of where it started, 
line 6 must have executed k times. As Figure 3.1 shows, let’s assume that n is 
a multiple of 3 so that we can divide the array A into groups of n=3 positions. 
Suppose that in the input to I NSERTION-SORT, the n=3 largest values occupy the 
ûrst n=3 array positions AŒ1 W n=3�. (It does not matter what relative order they 
have within the ûrst n=3 positions.) Once the array has been sorted, each of these 
n=3 values ends up somewhere in the last n=3 positions AŒ2n=3 C 1 W n�. For that 
to happen, each of these n=3 values must pass through each of the middle n=3 
positions AŒn=3 C 1 W 2n=3�. Each of these n=3 values passes through these middle 
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n=3 positions one position at a time, by at least n=3 executions of line 6. Because 
at least n=3 values have to pass through at least n=3 positions, the time taken by 
I NSERTION-SORT in the worst case is at least proportional to .n=3/.n=3/ D n 2 =9, 
which is �.n 2 /. 

Because we have shown that I NSERTION-SORT runs in O.n 2 / time in all cases 
and that there is an input that makes it take �.n 2 / time, we can conclude that the 
worst-case running time of I NSERTION-SORT is ‚.n 2 /. It does not matter that 
the constant factors for upper and lower bounds might differ. What matters is 
that we have characterized the worst-case running time to within constant factors 
(discounting lower-order terms). This argument does not show that I NSERTION- 
SORT runs in ‚.n 2 / time in all cases. Indeed, we saw in Chapter 2 that the best- 
case running time is ‚.n/. 

Exercises 
3.1-1 
Modify the lower-bound argument for insertion sort to handle input sizes that are 
not necessarily a multiple of 3. 
3.1-2 
Using reasoning similar to what we used for insertion sort, analyze the running 
time of the selection sort algorithm from Exercise 2.2-2. 
3.1-3 
Suppose that ˛ is a fraction in the range 0 < ˛ < 1. Show how to generalize 
the lower-bound argument for insertion sort to consider an input in which the ˛n 
largest values start in the ûrst ˛n positions. What additional restriction do you 
need to put on ˛? What value of ˛ maximizes the number of times that the ˛n 
largest values must pass through each of the middle .1  2˛/n array positions? 

3.2 Asymptotic notation: formal deûnitions 

Having seen asymptotic notation informally, let’s get more formal. The notations 
we use to describe the asymptotic running time of an algorithm are deûned in 
terms of functions whose domains are typically the set N of natural numbers or 
the set R of real numbers. Such notations are convenient for describing a running- 
time function T .n/. This section deûnes the basic asymptotic notations and also 
introduces some common <proper= notational abuses. 
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(a) (b) (c) 

n n n 
n 0 n 0 n 0 

f .n/ D ‚.g.n// f .n/ D O.g.n// f .n/ D �.g.n// 

f .n/ 

f .n/ 
f .n/ 

cg.n/ 

cg.n/ 

c 1 g.n/ 

c 2 g.n/ 

Figure 3.2 Graphic examples of the O , �, and ‚ notations. In each part, the value of n 0 shown 
is the minimum possible value, but any greater value also works. (a) O-notation gives an upper 
bound for a function to within a constant factor. We write f .n/ D O.g.n// if there are positive 
constants n 0 and c such that at and to the right of n 0 , the value of f .n/ always lies on or be- 
low cg.n/. (b) �-notation gives a lower bound for a function to within a constant factor. We write 
f .n/ D �.g.n// if there are positive constants n 0 and c such that at and to the right of n 0 , the value 
of f .n/ always lies on or above cg.n/. (c) ‚-notation bounds a function to within constant factors. 
We write f .n/ D ‚.g.n// if there exist positive constants n 0 , c 1 , and c 2 such that at and to the right 
of n 0 , the value of f .n/ always lies between c 1 g.n/ and c 2 g.n/ inclusive. 

O-notation 

As we saw in Section 3.1, O-notation describes an asymptotic upper bound. We 
use O-notation to give an upper bound on a function, to within a constant factor. 
Here is the formal deûnition of O-notation. For a given function g.n/, we denote 

by O.g.n// (pronounced <big-oh of g of n= or sometimes just <oh of g of n=) the 
set of functions 
O.g.n// D ff .n/ W there exist positive constants c and n 0 such that 

0 හ f .n/ හ cg.n/ for all n  n 0 g : 1 

A function f .n/ belongs to the set O.g.n// if there exists a positive constant c such 
that f .n/ හ cg.n/ for sufûciently large n. Figure 3.2(a) shows the intuition behind 
O-notation. For all values n at and to the right of n 0 , the value of the function f .n/ 
is on or below cg.n/. 
The deûnition of O.g.n// requires that every function f .n/ in the set O.g.n// 

be asymptotically nonnegative: f .n/ must be nonnegative whenever n is sufû- 
ciently large. (An asymptotically positive function is one that is positive for all 

1 Within set notation, a colon means <such that.= 
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sufûciently large n.) Consequently, the function g.n/ itself must be asymptotically 
nonnegative, or else the set O.g.n// is empty. We therefore assume that every 
function used within O-notation is asymptotically nonnegative. This assumption 
holds for the other asymptotic notations deûned in this chapter as well. 
You might be surprised that we deûne O-notation in terms of sets. Indeed, you 

might expect that we would write <f .n/ 2 O.g.n//= to indicate that f .n/ be- 
longs to the set O.g.n//. Instead, we usually write <f .n/ D O.g.n//= and say 
<f .n/ is big-oh of g.n/= to express the same notion. Although it may seem con- 
fusing at ûrst to abuse equality in this way, we’ll see later in this section that doing 
so has its advantages. 
Let’s explore an example of how to use the formal deûnition of O-notation to 

justify our practice of discarding lower-order terms and ignoring the constant coef- 
ûcient of the highest-order term. We’ll show that 4n 2 C100n C500 D O.n 2 /, even 
though the lower-order terms have much larger coefûcients than the leading term. 
We need to ûnd positive constants c and n 0 such that 4n 2 C 100n C 500 හ cn 2 

for all n  n 0 . Dividing both sides by n 2 gives 4 C 100=n C 500=n 2 හ c . This 
inequality is satisûed for many choices of c and n 0 . For example, if we choose 
n 0 D 1, then this inequality holds for c D 604. If we choose n 0 D 10, then c D 19 
works, and choosing n 0 D 100 allows us to use c D 5:05. 
We can also use the formal deûnition of O-notation to show that the function 

n 3  100n 2 does not belong to the set O.n 2 /, even though the coefûcient of n 2 

is a large negative number. If we had n 3  100n 2 D O.n 2 /, then there would be 
positive constants c and n 0 such that n 3  100n 2 හ cn 2 for all n  n 0 . Again, we 
divide both sides by n 2 , giving n  100 හ c . Regardless of what value we choose 
for the constant c , this inequality does not hold for any value of n > c C 100. 

-notation 

Just as O-notation provides an asymptotic upper bound on a function, �-notation 
provides an asymptotic lower bound. For a given function g.n/, we denote 
by �.g.n// (pronounced <big-omega of g of n= or sometimes just <omega of g 
of n=) the set of functions 
�.g.n// D ff .n/ W there exist positive constants c and n 0 such that 

0 හ cg.n/ හ f .n/ for all n  n 0 g : 

Figure 3.2(b) shows the intuition behind �-notation. For all values n at or to the 
right of n 0 , the value of f .n/ is on or above cg.n/. 
We’ve already shown that 4n 2 C 100n C 500 D O.n 2 /. Now let’s show that 

4n 2 C 100n C 500 D �.n 2 /. We need to ûnd positive constants c and n 0 such that 
4n 2 C 100n C 500  cn 2 for all n  n 0 . As before, we divide both sides by n 2 , 
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giving 4 C 100=n C 500=n 2  c . This inequality holds when n 0 is any positive 
integer and c D 4. 
What if we had subtracted the lower-order terms from the 4n 2 term instead of 

adding them? What if we had a small coefûcient for the n 2 term? The function 
would still be �.n 2 /. For example, let’s show that n 2 =100  100n  500 D �.n 2 /. 
Dividing by n 2 gives 1=100  100=n  500=n 2  c . We can choose any value 
for n 0 that is at least 10,005 and ûnd a positive value for c . For example, when 
n 0 D 10,005, we can choose c D 2:49  10 9 . Yes, that’s a tiny value for c , but it 
is positive. If we select a larger value for n 0 , we can also increase c . For example, 
if n 0 D 100,000, then we can choose c D 0:0089. The higher the value of n 0 , the 
closer to the coefûcient 1=100 we can choose c . 

‚-notation 

We use ‚-notation for asymptotically tight bounds. For a given function g.n/, we 
denote by ‚.g.n// (<theta of g of n=) the set of functions 
‚.g.n// D ff .n/ W there exist positive constants c 1 , c 2 , and n 0 such that 

0 හ c 1 g.n/ හ f .n/ හ c 2 g.n/ for all n  n 0 g : 

Figure 3.2(c) shows the intuition behind ‚-notation. For all values of n at and to 
the right of n 0 , the value of f .n/ lies at or above c 1 g.n/ and at or below c 2 g.n/. In 
other words, for all n  n 0 , the function f .n/ is equal to g.n/ to within constant 
factors. 
The deûnitions of O-, �-, and ‚-notations lead to the following theorem, whose 

proof we leave as Exercise 3.2-4. 

Theorem 3.1 
For any two functions f .n/ and g.n/, we have f .n/ D ‚.g.n// if and only if 
f .n/ D O.g.n// and f .n/ D �.g.n//. 
We typically apply Theorem 3.1 to prove asymptotically tight bounds from asymp- 
totic upper and lower bounds. 

Asymptotic notation and running times 
When you use asymptotic notation to characterize an algorithm’s running time, 
make sure that the asymptotic notation you use is as precise as possible without 
overstating which running time it applies to. Here are some examples of using 
asymptotic notation properly and improperly to characterize running times. 
Let’s start with insertion sort. We can correctly say that insertion sort’s worst- 

case running time is O.n 2 /, �.n 2 /, and4due to Theorem 3.14‚.n 2 /. Although 
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all three ways to characterize the worst-case running times are correct, the ‚.n 2 / 
bound is the most precise and hence the most preferred. We can also correctly say 
that insertion sort’s best-case running time is O.n/, �.n/, and ‚.n/, again with 
‚.n/ the most precise and therefore the most preferred. 

Here is what we cannot correctly say: insertion sort’s running time is ‚.n 2 /. 
That is an overstatement because by omitting <worst-case= from the statement, 
we’re left with a blanket statement covering all cases. The error here is that inser- 
tion sort does not run in ‚.n 2 / time in all cases since, as we’ve seen, it runs in 
‚.n/ time in the best case. We can correctly say that insertion sort’s running time 
is O.n 2 /, however, because in all cases, its running time grows no faster than n 2 . 
When we say O.n 2 / instead of ‚.n 2 /, there is no problem in having cases whose 
running time grows more slowly than n 2 . Likewise, we cannot correctly say that 
insertion sort’s running time is ‚.n/, but we can say that its running time is �.n/. 
How about merge sort? Since merge sort runs in ‚.n lg n/ time in all cases, 

we can just say that its running time is ‚.n lg n/ without specifying worst-case, 
best-case, or any other case. 
People occasionally conüate O-notation with ‚-notation by mistakenly using 

O-notation to indicate an asymptotically tight bound. They say things like <an 
O.n lg n/-time algorithm runs faster than an O.n 2 /-time algorithm.= Maybe it 
does, maybe it doesn’t. Since O-notation denotes only an asymptotic upper bound, 
that so-called O.n 2 /-time algorithm might actually run in ‚.n/ time. You should 
be careful to choose the appropriate asymptotic notation. If you want to indicate 
an asymptotically tight bound, use ‚-notation. 

We typically use asymptotic notation to provide the simplest and most precise 
bounds possible. For example, if an algorithm has a running time of 3n 2 C 20n 
in all cases, we use asymptotic notation to write that its running time is ‚.n 2 /. 
Strictly speaking, we are also correct in writing that the running time is O.n 3 / or 
‚.3n 2 C 20n/. Neither of these expressions is as useful as writing ‚.n 2 / in this 
case, however: O.n 3 / is less precise than ‚.n 2 / if the running time is 3n 2 C 20n, 
and ‚.3n 2 C 20n/ introduces complexity that obscures the order of growth. By 
writing the simplest and most precise bound, such as ‚.n 2 /, we can categorize 
and compare different algorithms. Throughout the book, you will see asymptotic 
running times that are almost always based on polynomials and logarithms: func- 
tions such as n, n lg 2 n, n 2 lg n, or n 1=2 . You will also see some other functions, 
such as exponentials, lg lg n, and lg  n (see Section 3.3). It is usually fairly easy 
to compare the rates of growth of these functions. Problem 3-3 gives you good 
practice. 
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Asymptotic notation in equations and inequalities 
Although we formally deûne asymptotic notation in terms of sets, we use the equal 
sign (D) instead of the set membership sign (2) within formulas. For example, we 
wrote that 4n 2 C 100n C 500 D O.n 2 /. We might also write 2n 2 C 3n C 1 D 
2n 2 C ‚.n/. How do we interpret such formulas? 

When the asymptotic notation stands alone (that is, not within a larger formula) 
on the right-hand side of an equation (or inequality), as in 4n 2 C 100n C 500 D 
O.n 2 /, the equal sign means set membership: 4n 2 C 100n C 500 2 O.n 2 /. In 
general, however, when asymptotic notation appears in a formula, we interpret it as 
standing for some anonymous function that we do not care to name. For example, 
the formula 2n 2 C 3n C 1 D 2n 2 C ‚.n/ means that 2n 2 C 3n C 1 D 2n 2 C f .n/, 
where f .n/ 2 ‚.n/. In this case, we let f .n/ D 3n C 1, which indeed belongs 
to ‚.n/. 

Using asymptotic notation in this manner can help eliminate inessential detail 
and clutter in an equation. For example, in Chapter 2 we expressed the worst-case 
running time of merge sort as the recurrence 
T .n/ D 2T .n=2/ C ‚.n/ : 

If we are interested only in the asymptotic behavior of T .n/, there is no point in 
specifying all the lower-order terms exactly, because they are all understood to be 
included in the anonymous function denoted by the term ‚.n/. 

The number of anonymous functions in an expression is understood to be equal 
to the number of times the asymptotic notation appears. For example, in the ex- 
pression 
n X 

i D1 

O.i/ ; 

there is only a single anonymous function (a function of i ). This expression is thus 
not the same as O.1/ C O.2/ C    C O.n/, which doesn’t really have a clean 
interpretation. 
In some cases, asymptotic notation appears on the left-hand side of an equation, 

as in 
2n 2 C ‚.n/ D ‚.n 2 / : 

Interpret such equations using the following rule: No matter how the anonymous 
functions are chosen on the left of the equal sign, there is a way to choose the 
anonymous functions on the right of the equal sign to make the equation valid. 
Thus, our example means that for any function f .n/ 2 ‚.n/, there is some function 
g.n/ 2 ‚.n 2 / such that 2n 2 Cf .n/ D g.n/ for all n. In other words, the right-hand 
side of an equation provides a coarser level of detail than the left-hand side. 
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We can chain together a number of such relationships, as in 
2n 2 C 3n C 1 D 2n 2 C ‚.n/ 

D ‚.n 2 / : 

By the rules above, interpret each equation separately. The ûrst equation says that 
there is some function f .n/ 2 ‚.n/ such that 2n 2 C3n C1 D 2n 2 C f .n/ for all n. 
The second equation says that for any function g.n/ 2 ‚.n/ (such as the f .n/ just 
mentioned), there is some function h.n/ 2 ‚.n 2 / such that 2n 2 C g.n/ D h.n/ for 
all n. This interpretation implies that 2n 2 C 3n C 1 D ‚.n 2 /, which is what the 
chaining of equations intuitively says. 

Proper abuses of asymptotic notation 

Besides the abuse of equality to mean set membership, which we now see has a 
precise mathematical interpretation, another abuse of asymptotic notation occurs 
when the variable tending toward 1 must be inferred from context. For example, 
when we say O.g.n//, we can assume that we’re interested in the growth of g.n/ 
as n grows, and if we say O.g.m// we’re talking about the growth of g.m/ as m 
grows. The free variable in the expression indicates what variable is going to 1. 

The most common situation requiring contextual knowledge of which variable 
tends to 1 occurs when the function inside the asymptotic notation is a constant, 
as in the expression O.1/. We cannot infer from the expression which variable is 
going to 1, because no variable appears there. The context must disambiguate. For 
example, if the equation using asymptotic notation is f .n/ D O.1/, it’s apparent 
that the variable we’re interested in is n. Knowing from context that the variable of 
interest is n, however, allows us to make perfect sense of the expression by using 
the formal deûnition of O-notation: the expression f .n/ D O.1/ means that the 
function f .n/ is bounded from above by a constant as n goes to 1. Technically, it 
might be less ambiguous if we explicitly indicated the variable tending to 1 in the 
asymptotic notation itself, but that would clutter the notation. Instead, we simply 
ensure that the context makes it clear which variable (or variables) tend to 1. 

When the function inside the asymptotic notation is bounded by a positive con- 
stant, as in T .n/ D O.1/, we often abuse asymptotic notation in yet another way, 
especially when stating recurrences. We may write something like T .n/ D O.1/ 
for n < 3. According to the formal deûnition of O-notation, this statement is 
meaningless, because the deûnition only says that T .n/ is bounded above by a 
positive constant c for n  n 0 for some n 0 > 0. The value of T .n/ for n < n 0 
need not be so bounded. Thus, in the example T .n/ D O.1/ for n < 3, we cannot 
infer any constraint on T .n/ when n < 3, because it might be that n 0 > 3. 

What is conventionally meant when we say T .n/ D O.1/ for n < 3 is that there 
exists a positive constant c such that T .n/ හ c for n < 3. This convention saves 
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us the trouble of naming the bounding constant, allowing it to remain anonymous 
while we focus on more important variables in an analysis. Similar abuses occur 
with the other asymptotic notations. For example, T .n/ D ‚.1/ for n < 3 means 
that T .n/ is bounded above and below by positive constants when n < 3. 
Occasionally, the function describing an algorithm’s running time may not be 

deûned for certain input sizes, for example, when an algorithm assumes that the 
input size is an exact power of 2. We still use asymptotic notation to describe the 
growth of the running time, understanding that any constraints apply only when 
the function is deûned. For example, suppose that f .n/ is deûned only on a subset 
of the natural or nonnegative real numbers. Then f .n/ D O.g.n// means that the 
bound 0 හ T .n/ හ cg.n/ in the deûnition of O-notation holds for all n  n 0 over 
the domain of f .n/, that is, where f .n/ is deûned. This abuse is rarely pointed 
out, since what is meant is generally clear from context. 
In mathematics, it’s okay4and often desirable4to abuse a notation, as long as 

we don’t misuse it. If we understand precisely what is meant by the abuse and don’t 
draw incorrect conclusions, it can simplify our mathematical language, contribute 
to our higher-level understanding, and help us focus on what really matters. 

o-notation 

The asymptotic upper bound provided by O-notation may or may not be asymp- 
totically tight. The bound 2n 2 D O.n 2 / is asymptotically tight, but the bound 
2n D O.n 2 / is not. We use o-notation to denote an upper bound that is not asymp- 
totically tight. We formally deûne o.g.n// (<little-oh of g of n=) as the set 
o.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant 

n 0 > 0 such that 0 හ f .n/ < cg.n/ for all n  n 0 g : 

For example, 2n D o.n 2 /, but 2n 2 ¤ o.n 2 /. 
The deûnitions of O-notation and o-notation are similar. The main difference 

is that in f .n/ D O.g.n//, the bound 0 හ f .n/ හ cg.n/ holds for some con- 
stant c > 0, but in f .n/ D o.g.n//, the bound 0 හ f .n/ < cg.n/ holds for all 
constants c > 0. Intuitively, in o-notation, the function f .n/ becomes insigniûcant 
relative to g.n/ as n gets large: 

lim 
n!1 

f .n/ 
g.n/ 

D 0 : 

Some authors use this limit as a deûnition of the o-notation, but the deûnition in 
this book also restricts the anonymous functions to be asymptotically nonnegative. 
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!-notation 

By analogy, !-notation is to �-notation as o-notation is to O-notation. We use 
!-notation to denote a lower bound that is not asymptotically tight. One way to 
deûne it is by 

f .n/ 2 !.g.n// if and only if g.n/ 2 o.f .n// : 

Formally, however, we deûne !.g.n// (<little-omega of g of n=) as the set 
!.g.n// D ff .n/ W for any positive constant c > 0, there exists a constant 

n 0 > 0 such that 0 හ cg.n/ < f .n/ for all n  n 0 g : 

Where the deûnition of o-notation says that f .n/ < cg.n/ , the deûnition of 
!-notation says the opposite: that cg.n/ < f .n/ . For examples of !-notation, 
we have n 2 =2 D !.n/, but n 2 =2 ¤ !.n 2 /. The relation f .n/ D !.g.n// implies 
that 
lim 
n!1 

f .n/ 
g.n/ 

D 1 ; 

if the limit exists. That is, f .n/ becomes arbitrarily large relative to g.n/ as n gets 
large. 

Comparing functions 
Many of the relational properties of real numbers apply to asymptotic comparisons 
as well. For the following, assume that f .n/ and g.n/ are asymptotically positive. 
Transitivity: 
f .n/ D ‚.g.n// and g.n/ D ‚.h.n// imply f .n/ D ‚.h.n// ; 
f .n/ D O.g.n// and g.n/ D O.h.n// imply f .n/ D O.h.n// ; 
f .n/ D �.g.n// and g.n/ D �.h.n// imply f .n/ D �.h.n// ; 
f .n/ D o.g.n// and g.n/ D o.h.n// imply f .n/ D o.h.n// ; 
f .n/ D !.g.n// and g.n/ D !.h.n// imply f .n/ D !.h.n// : 

Reüexivity: 
f .n/ D ‚.f .n// ; 
f .n/ D O.f .n// ; 
f .n/ D �.f .n// : 

Symmetry: 
f .n/ D ‚.g.n// if and only if g.n/ D ‚.f .n// : 
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Transpose symmetry: 
f .n/ D O.g.n// if and only if g.n/ D �.f .n// ; 
f .n/ D o.g.n// if and only if g.n/ D !.f .n// : 

Because these properties hold for asymptotic notations, we can draw an analogy 
between the asymptotic comparison of two functions f and g and the comparison 
of two real numbers a and b: 
f .n/ D O.g.n// is like a හ b ; 
f .n/ D �.g.n// is like a  b ; 
f .n/ D ‚.g.n// is like a D b ; 
f .n/ D o.g.n// is like a < b ; 
f .n/ D !.g.n// is like a > b : 
We say that f .n/ is asymptotically smaller than g.n/ if f .n/ D o.g.n//, and f .n/ 
is asymptotically larger than g.n/ if f .n/ D !.g.n//. 
One property of real numbers, however, does not carry over to asymptotic nota- 

tion: 
Trichotomy: For any two real numbers a and b, exactly one of the following 

must hold: a < b, a D b, or a > b. 
Although any two real numbers can be compared, not all functions are asymptot- 
ically comparable. That is, for two functions f .n/ and g.n/, it may be the case 
that neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. For example, we cannot 
compare the functions n and n 1Csin n using asymptotic notation, since the value of 
the exponent in n 1Csin n oscillates between 0 and 2, taking on all values in between. 

Exercises 
3.2-1 
Let f .n/ and g.n/ be asymptotically nonnegative functions. Using the basic deû- 
nition of ‚-notation, prove that max ff .n/; g.n/g D ‚.f .n/ C g.n//. 
3.2-2 
Explain why the statement, <The running time of algorithm A is at least O.n 2 /,= is 
meaningless. 
3.2-3 
Is 2 nC1 D O.2 n /? Is 2 2n D O.2 n /? 
3.2-4 
Prove Theorem 3.1. 
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3.2-5 
Prove that the running time of an algorithm is ‚.g.n// if and only if its worst-case 
running time is O.g.n// and its best-case running time is �.g.n//. 
3.2-6 
Prove that o.g.n// \ !.g.n// is the empty set. 
3.2-7 
We can extend our notation to the case of two parameters n and m that can go to 
1 independently at different rates. For a given function g.n;m/, we denote by 
O.g.n;m// the set of functions 
O.g.n;m// D ff .n;m/ W there exist positive constants c , n 0 , and m 0 

such that 0 හ f .n;m/ හ cg.n;m/ 
for all n  n 0 or m  m 0 g : 

Give corresponding deûnitions for �.g.n; m// and ‚.g.n;m//. 

3.3 Standard notations and common functions 

This section reviews some standard mathematical functions and notations and ex- 
plores the relationships among them. It also illustrates the use of the asymptotic 
notations. 

Monotonicity 

A function f .n/ is monotonically increasing if m හ n implies f .m/ හ f .n/. 
Similarly, it is monotonically decreasing if m හ n implies f .m/  f .n/. A func- 
tion f .n/ is strictly increasing if m < n implies f .m/ < f .n/ and strictly de- 
creasing if m < n implies f .m/ > f .n/. 

Floors and ceilings 
For any real number x , we denote the greatest integer less than or equal to x by bx c 
(read <the üoor of x =) and the least integer greater than or equal to x by dx e (read 
<the ceiling of x =). The üoor function is monotonically increasing, as is the ceiling 
function. 

Floors and ceilings obey the following properties. For any integer n, we have 
bnc D n D dne : (3.1) 
For all real x , we have 
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x  1 < bx c හ x හ dx e < x C 1 : (3.2) 
We also have 
 bx c D dx e ; (3.3) 
or equivalently, 
 dx e D bx c : (3.4) 
For any real number x  0 and integers a; b > 0, we have å dx=ae 

b 

æ 
D 
å 
x 
ab 

æ 
; (3.5) ç bx=ac 

b 

è 
D 
ç 
x 
ab 

è 
; (3.6) å 

a 
b 

æ 
හ 
a C .b  1/ 

b 
; (3.7) ç 

a 
b 

è 
 
a  .b  1/ 

b 
: (3.8) 

For any integer n and real number x , we have 
bn C x c D n C bx c ; (3.9) 
dn C x e D n C dx e : (3.10) 

Modular arithmetic 
For any integer a and any positive integer n, the value a mod n is the remainder 
(or residue) of the quotient a=n: 
a mod n D a  n ba=nc : (3.11) 
It follows that 
0 හ a mod n < n ; (3.12) 
even when a is negative. 
Given a well-deûned notion of the remainder of one integer when divided by an- 

other, it is convenient to provide special notation to indicate equality of remainders. 
If .a mod n/ D .b mod n/, we write a D b .mod n/ and say that a is equivalent 
to b, modulo n. In other words, a D b .mod n/ if a and b have the same remain- 
der when divided by n. Equivalently, a D b .mod n/ if and only if n is a divisor 
of b  a. We write a ¤ b .mod n/ if a is not equivalent to b, modulo n. 
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Polynomials 
Given a nonnegative integer d , a polynomial in n of degree d is a function p.n/ 
of the form 

p.n/ D 
d X 

i D0 

a i n i ; 

where the constants a 0 ; a 1 ; : : : ; a d are the coefficients of the polynomial and 
a d ¤ 0. A polynomial is asymptotically positive if and only if a d > 0. For an 
asymptotically positive polynomial p.n/ of degree d , we have p.n/ D ‚.n d /. For 
any real constant a  0, the function n a is monotonically increasing, and for any 
real constant a හ 0, the function n a is monotonically decreasing. We say that a 
function f .n/ is polynomially bounded if f .n/ D O.n k / for some constant k. 

Exponentials 
For all real a > 0, m, and n, we have the following identities: 
a 0 D 1 ; 
a 1 D a ; 
a 1 D 1=a ; 

.a m / n D a mn ; 

.a m / n D .a n / m ; 
a m a n D a mCn : 

For all n and a  1, the function a n is monotonically increasing in n. When 
convenient, we assume that 0 0 D 1. 

We can relate the rates of growth of polynomials and exponentials by the fol- 
lowing fact. For all real constants a > 1 and b, we have 

lim 
n!1 

n b 

a n D 0 ; 

from which we can conclude that 
n b D o.a n / : (3.13) 
Thus, any exponential function with a base strictly greater than 1 grows faster than 
any polynomial function. 

Using e to denote 2:71828 : : :, the base of the natural-logarithm function, we 
have for all real x , 

e x D 1 C x C 
x 2 

2Š 
C 
x 3 

3Š 
C    D 

1 X 

i D0 

x i 

i Š 
; 
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where <Š= denotes the factorial function deûned later in this section. For all real x , 
we have the inequality 
1 C x හ e x ; (3.14) 
where equality holds only when x D 0. When jx j හ 1, we have the approximation 
1 C x හ e x හ 1 C x C x 2 : (3.15) 
When x ! 0, the approximation of e x by 1 C x is quite good: 
e x D 1 C x C ‚.x 2 / : 

(In this equation, the asymptotic notation is used to describe the limiting behavior 
as x ! 0 rather than as x ! 1.) We have for all x , 
lim 
n!1 

 
1 C 

x 
n 

Í n 
D e x : (3.16) 

Logarithms 
We use the following notations: 

lg n D log 2 n (binary logarithm) , 
ln n D log e n (natural logarithm) , 

lg k n D .lg n/ k (exponentiation) , 
lg lg n D lg.lg n/ (composition) . 
We adopt the following notational convention: in the absence of parentheses, a 
logarithm function applies only to the next term in the formula, so that lg n C 1 
means .lg n/ C 1 and not lg.n C 1/. 

For any constant b > 1, the function log b n is undeûned if n හ 0, strictly 
increasing if n > 0, negative if 0 < n < 1, positive if n > 1, and 0 if n D 1. For 
all real a > 0, b > 0, c > 0, and n, we have 

a D b log b a ; (3.17) 
log c .ab/ D log c a C log c b ; (3.18) 

log b a n D n log b a ; 

log b a D 
log c a 
log c b 

; (3.19) 
log b .1=a/ D  log b a ; (3.20) 

log b a D 
1 

log a b 
; 

a log b c D c log b a ; (3.21) 
where, in each equation above, logarithm bases are not 1. 
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By equation (3.19), changing the base of a logarithm from one constant to an- 
other changes the value of the logarithm by only a constant factor. Consequently, 
we often use the notation <lg n= when we don’t care about constant factors, such 
as in O-notation. Computer scientists ûnd 2 to be the most natural base for loga- 
rithms because so many algorithms and data structures involve splitting a problem 
into two parts. 

There is a simple series expansion for ln.1 C x/ when jx j < 1: 

ln.1 C x/ D x  
x 2 

2 
C 
x 3 

3 
 
x 4 

4 
C 
x 5 

5 
    : (3.22) 

We also have the following inequalities for x > 1: 
x 

1 C x 
හ ln.1 C x/ හ x ; (3.23) 

where equality holds only for x D 0. 
We say that a function f .n/ is polylogarithmically bounded if f .n/ D O.lg k n/ 

for some constant k. We can relate the growth of polynomials and polylogarithms 
by substituting lg n for n and 2 a for a in equation (3.13). For all real constants 
a > 0 and b, we have 
lg b n D o.n a / : (3.24) 
Thus, any positive polynomial function grows faster than any polylogarithmic func- 
tion. 

Factorials 
The notation nŠ (read <n factorial=) is deûned for integers n  0 as 

nŠ D 

( 
1 if n D 0 ; 
n  .n  1/Š if n > 0 : 

Thus, nŠ D 1  2  3    n. 
A weak upper bound on the factorial function is nŠ හ n n , since each of the n 

terms in the factorial product is at most n. Stirling’s approximation, 

nŠ D 
p 
2�n 

 n 
e 

Í n 
Î 
1 C ‚ 

Î 
1 
n 

ÏÏ 
; (3.25) 

where e is the base of the natural logarithm, gives us a tighter upper bound, and a 
lower bound as well. Exercise 3.3-4 asks you to prove the three facts 

nŠ D o.n n / ; (3.26) 
nŠ D !.2 n / ; (3.27) 

lg.nŠ/ D ‚.n lg n/ ; (3.28) 
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where Stirling’s approximation is helpful in proving equation (3.28). The following 
equation also holds for all n  1: 

nŠ D 
p 
2�n 

 n 
e 

Í n 
e ˛ n (3.29) 

where 
1 

12n C 1 
< ˛ n < 

1 
12n 

: 

Functional iteration 

We use the notation f .i/ .n/ to denote the function f .n/ iteratively applied i times 
to an initial value of n. Formally, let f .n/ be a function over the reals. For non- 
negative integers i , we recursively deûne 

f .i/ .n/ D 

( 
n if i D 0 ; 
f .f .i 1/ .n// if i > 0 : (3.30) 

For example, if f .n/ D 2n, then f .i/ .n/ D 2 i n. 

The iterated logarithm function 

We use the notation lg  n (read <log star of n=) to denote the iterated logarithm, de- 
ûned as follows. Let lg .i/ n be as deûned above, with f .n/ D lg n. Because the log- 
arithm of a nonpositive number is undeûned, lg .i/ n is deûned only if lg .i 1/ n > 0. 
Be sure to distinguish lg .i/ n (the logarithm function applied i times in succession, 
starting with argument n) from lg i n (the logarithm of n raised to the i th power). 
Then we deûne the iterated logarithm function as 
lg  n D min ̊  

i  0 W lg .i/ n හ 1 
 
: 

The iterated logarithm is a very slowly growing function: 
lg  2 D 1 ; 
lg  4 D 2 ; 

lg  16 D 3 ; 
lg  65536 D 4 ; 

lg  .2 65536 / D 5 : 

Since the number of atoms in the observable universe is estimated to be about 10 80 , 
which is much less than 2 65536 D 10 65536= lg 10  10 19;728 , we rarely encounter an 
input size n for which lg  n > 5. 
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Fibonacci numbers 
We deûne the Fibonacci numbers F i , for i  0, as follows: 

F i D 

Ĩ 
0 if i D 0 ; 
1 if i D 1 ; 
F i 1 C F i 2 if i  2 : 

(3.31) 

Thus, after the ûrst two, each Fibonacci number is the sum of the two previous 
ones, yielding the sequence 
0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; : : : : 

Fibonacci numbers are related to the golden ratio � and its conjugate y � , which are 
the two roots of the equation 
x 2 D x C 1 : 

As Exercise 3.3-7 asks you to prove, the golden ratio is given by 

� D 
1 C 

p 
5 

2 
(3.32) 

D 1:61803 : : : ; 

and its conjugate, by 

y � D 
1  

p 
5 

2 
(3.33) 

D :61803 : : : : 
Speciûcally, we have 

F i D 
� i  y � i p 

5 
; 

which can be proved by induction (Exercise 3.3-8). Since 
ˇ ˇ y � ̌

 ˇ < 1, we have ˇ ˇ y � i ̌
 ˇ 

p 
5 
< 

1 p 
5 

< 
1 
2 
; 

which implies that 

F i D 
ç 
� i p 
5 

C 
1 
2 

è 
; (3.34) 

which is to say that the i th Fibonacci number F i is equal to � i = 
p 
5 rounded to the 

nearest integer. Thus, Fibonacci numbers grow exponentially. 
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Exercises 
3.3-1 
Show that if f .n/ and g.n/ are monotonically increasing functions, then so are 
the functions f .n/ C g.n/ and f .g.n//, and if f .n/ and g.n/ are in addition 
nonnegative, then f .n/  g.n/ is monotonically increasing. 
3.3-2 
Prove that b˛ncCd.1  ˛/ne D n for any integer n and real number ˛ in the range 
0 හ ˛ හ 1. 
3.3-3 
Use equation (3.14) or other means to show that .n C o.n// k D ‚.n k / for any real 
constant k. Conclude that dne k D ‚.n k / and bnc k D ‚.n k /. 
3.3-4 
Prove the following: 
a. Equation (3.21). 
b. Equations (3.26)3(3.28). 
c. lg.‚.n// D ‚.lg n/. 

? 3.3-5 
Is the function dlg neŠ polynomially bounded? Is the function dlg lg neŠ polynomi- 
ally bounded? 

? 3.3-6 
Which is asymptotically larger: lg.lg  n/ or lg  .lg n/? 
3.3-7 
Show that the golden ratio � and its conjugate y � both satisfy the equation 
x 2 D x C 1. 
3.3-8 
Prove by induction that the i th Fibonacci number satisûes the equation 

F i D .� i  y � i /= 
p 
5 ; 

where � is the golden ratio and y � is its conjugate. 
3.3-9 
Show that k lg k D ‚.n/ implies k D ‚.n= lg n/. 
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Problems 

3-1 Asymptotic behavior of polynomials 
Let 

p.n/ D 
d X 

i D0 

a i n i ; 

where a d > 0, be a degree-d polynomial in n, and let k be a constant. Use the 
deûnitions of the asymptotic notations to prove the following properties. 
a. If k  d , then p.n/ D O.n k /. 
b. If k හ d , then p.n/ D �.n k /. 

c. If k D d , then p.n/ D ‚.n k /. 
d. If k > d , then p.n/ D o.n k /. 

e. If k < d , then p.n/ D !.n k /. 

3-2 Relative asymptotic growths 
Indicate, for each pair of expressions .A;B/ in the table below whether A is O , o, 
�, !, or ‚ of B . Assume that k  1, � > 0, and c > 1 are constants. Write your 
answer in the form of the table with <yes= or <no= written in each box. 

A B O o � ! ‚ 
a. lg k n n  

b. n k c n 

c. p 
n n sin n 

d. 2 n 2 n=2 

e. n lg c c lg n 

f. lg.nŠ/ lg.n n / 

3-3 Ordering by asymptotic growth rates 
a. Rank the following functions by order of growth. That is, ûnd an arrange- 

ment g 1 ; g 2 ; : : : ; g 30 of the functions satisfying g 1 D �.g 2 /, g 2 D �.g 3 /, . . . , 
g 29 D �.g 30 /. Partition your list into equivalence classes such that functions 
f .n/ and g.n/ belong to the same class if and only if f .n/ D ‚.g.n//. 
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lg.lg  n/ 2 lg  n . 
p 
2/ lg n n 2 nŠ .lg n/Š 

.3=2/ n n 3 lg 2 n lg.nŠ/ 2 2 n 
n 1= lg n 

ln ln n lg  n n  2 n n lg lg n ln n 1 

2 lg n .lg n/ lg n e n 4 lg n .n C 1/Š 
p lg n 

lg  .lg n/ 2 
p 
2 lg n n 2 n n lg n 2 2 nC1 

b. Give an example of a single nonnegative function f .n/ such that for all func- 
tions g i .n/ in part (a), f .n/ is neither O.g i .n// nor �.g i .n//. 

3-4 Asymptotic notation properties 
Let f .n/ and g.n/ be asymptotically positive functions. Prove or disprove each of 
the following conjectures. 
a. f .n/ D O.g.n// implies g.n/ D O.f .n//. 

b. f .n/ C g.n/ D ‚.min ff .n/; g.n/g/. 

c. f .n/ D O.g.n// implies lg f .n/ D O.lg g.n//, where lg g.n/  1 and 
f .n/  1 for all sufûciently large n. 

d. f .n/ D O.g.n// implies 2 f .n/ D O 
ã 
2 g.n/ 

ä . 
e. f .n/ D O ..f .n// 2 /. 

f. f .n/ D O.g.n// implies g.n/ D �.f .n// . 

g. f .n/ D ‚.f .n=2//. 

h. f .n/ C o.f .n// D ‚.f .n//. 

3-5 Manipulating asymptotic notation 
Let f .n/ and g.n/ be asymptotically positive functions. Prove the following iden- 
tities: 
a. ‚.‚.f .n/// D ‚.f .n//. 

b. ‚.f .n// C O.f .n// D ‚.f .n//. 

c. ‚.f .n// C ‚.g.n// D ‚.f .n/ C g.n//. 

d. ‚.f .n//  ‚.g.n// D ‚.f .n/  g.n//. 
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e. Argue that for any real constants a 1 ; b 1 > 0 and integer constants k 1 ; k 2 , the 
following asymptotic bound holds: 

.a 1 n/ k 1 lg k 2 .a 2 n/ D ‚.n k 1 lg k 2 n/ : 

? f. Prove that for S ෂ Z, we have 
X 

k2S 

‚.f .k// D ‚ 

 X 

k2S 

f .k/ 

! 

; 

assuming that both sums converge. 

? g. Show that for S ෂ Z, the following asymptotic bound does not necessarily 
hold, even assuming that both products converge, by giving a counterexample: 

Y 

k2S 

‚.f .k// D ‚ 

 Y 

k2S 

f .k/ 

! 

: 

3-6 Variations on O and ˝ 
Some authors deûne �-notation in a slightly different way than this textbook does. 
We’ll use the nomenclature 1 

� (read <omega inûnity=) for this alternative deûni- 
tion. We say that f .n/ D 

1 
�.g.n// if there exists a positive constant c such that 

f .n/  cg.n/  0 for inûnitely many integers n. 
a. Show that for any two asymptotically nonnegative functions f .n/ and g.n/, we 

have f .n/ D O.g.n// or f .n/ D 
1 
�.g.n// (or both). 

b. Show that there exist two asymptotically nonnegative functions f .n/ and g.n/ 
for which neither f .n/ D O.g.n// nor f .n/ D �.g.n// holds. 

c. Describe the potential advantages and disadvantages of using 1 
�-notation in- 

stead of �-notation to characterize the running times of programs. 
Some authors also deûne O in a slightly different manner. We’ll use O 0 for the 
alternative deûnition: f .n/ D O 0 .g.n// if and only if jf .n/j D O.g.n//. 
d. What happens to each direction of the <if and only if= in Theorem 3.1 on 

page 56 if we substitute O 0 for O but still use �? 
Some authors deûne e O (read <soft-oh=) to mean O with logarithmic factors ig- 
nored: 
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e O.g.n// D ff .n/ W there exist positive constants c , k, and n 0 such that 
0 හ f .n/ හ cg.n/ lg k .n/ for all n  n 0 g : 

e. Deûne e � and e ‚ in a similar manner. Prove the corresponding analog to Theo- 
rem 3.1. 

3-7 Iterated functions 
We can apply the iteration operator  used in the lg  function to any monotonically 
increasing function f .n/ over the reals. For a given constant c 2 R, we deûne the 
iterated function f  

c by 
f  
c .n/ D min ̊  

i  0 W f .i/ .n/ හ c 
 
; 

which need not be well deûned in all cases. In other words, the quantity f  
c .n/ is 

the minimum number of iterated applications of the function f required to reduce 
its argument down to c or less. 

For each of the functions f .n/ and constants c in the table below, give as tight 
a bound as possible on f  

c .n/. If there is no i such that f .i/ .n/ හ c , write <unde- 
ûned= as your answer. 

f .n/ c f  
c .n/ 

a. n  1 0 
b. lg n 1 
c. n=2 1 
d. n=2 2 
e. p 

n 2 
f. p 

n 1 
g. n 1=3 2 

Chapter notes 

Knuth [259] traces the origin of the O-notation to a number-theory text by P. Bach- 
mann in 1892. The o-notation was invented by E. Landau in 1909 for his discussion 
of the distribution of prime numbers. The � and ‚ notations were advocated by 
Knuth [265] to correct the popular, but technically sloppy, practice in the litera- 
ture of using O-notation for both upper and lower bounds. As noted earlier in 
this chapter, many people continue to use the O-notation where the ‚-notation is 
more technically precise. The soft-oh notation e O in Problem 3-6 was introduced 



Notes for Chapter 3 75 

by Babai, Luks, and Seress [31], although it was originally written as O. Some 
authors now deûne e O.g.n// as ignoring factors that are logarithmic in g.n/, rather 
than in n. With this deûnition, we can say that n2 n D e O.2 n /, but with the deû- 
nition in Problem 3-6, this statement is not true. Further discussion of the history 
and development of asymptotic notations appears in works by Knuth [259, 265] 
and Brassard and Bratley [70]. 
Not all authors deûne the asymptotic notations in the same way, although the 

various deûnitions agree in most common situations. Some of the alternative def- 
initions encompass functions that are not asymptotically nonnegative, as long as 
their absolute values are appropriately bounded. 
Equation (3.29) is due to Robbins [381]. Other properties of elementary math- 

ematical functions can be found in any good mathematical reference, such as 
Abramowitz and Stegun [1] or Zwillinger [468], or in a calculus book, such as 
Apostol [19] or Thomas et al. [433]. Knuth [259] and Graham, Knuth, and Patash- 
nik [199] contain a wealth of material on discrete mathematics as used in computer 
science. 


