
1 The Role of Algorithms in Computing 

What are algorithms? Why is the study of algorithms worthwhile? What is the role 
of algorithms relative to other technologies used in computers? This chapter will 
answer these questions. 

1.1 Algorithms 

Informally, an algorithm is any well-deûned computational procedure that takes 
some value, or set of values, as input and produces some value, or set of values, as 
output in a ûnite amount of time. An algorithm is thus a sequence of computational 
steps that transform the input into the output. 
You can also view an algorithm as a tool for solving a well-speciûed computa- 

tional problem. The statement of the problem speciûes in general terms the desired 
input/output relationship for problem instances, typically of arbitrarily large size. 
The algorithm describes a speciûc computational procedure for achieving that in- 
put/output relationship for all problem instances. 

As an example, suppose that you need to sort a sequence of numbers into mono- 
tonically increasing order. This problem arises frequently in practice and provides 
fertile ground for introducing many standard design techniques and analysis tools. 
Here is how we formally deûne the sorting problem: 
Input: A sequence of n numbers ha 1 ; a 2 ; : : : ; a n i. 
Output: A permutation (reordering) ha 0 1 ; a 0 2 ; : : : ; a 0 n i of the input sequence such 

that a 0 1 හ a 0 2 හ    හ a 0 n . 
Thus, given the input sequence h31; 41; 59; 26; 41; 58i, a correct sorting algorithm 
returns as output the sequence h26; 31; 41; 41; 58; 59i. Such an input sequence is 
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called an instance of the sorting problem. In general, an instance of a problem 1 

consists of the input (satisfying whatever constraints are imposed in the problem 
statement) needed to compute a solution to the problem. 

Because many programs use it as an intermediate step, sorting is a fundamental 
operation in computer science. As a result, you have a large number of good sort- 
ing algorithms at your disposal. Which algorithm is best for a given application 
depends on4among other factors4the number of items to be sorted, the extent 
to which the items are already somewhat sorted, possible restrictions on the item 
values, the architecture of the computer, and the kind of storage devices to be used: 
main memory, disks, or even4archaically4tapes. 

An algorithm for a computational problem is correct if, for every problem in- 
stance provided as input, it halts4ûnishes its computing in ûnite time4and out- 
puts the correct solution to the problem instance. A correct algorithm solves the 
given computational problem. An incorrect algorithm might not halt at all on some 
input instances, or it might halt with an incorrect answer. Contrary to what you 
might expect, incorrect algorithms can sometimes be useful, if you can control 
their error rate. We’ll see an example of an algorithm with a controllable error rate 
in Chapter 31 when we study algorithms for ûnding large prime numbers. Ordi- 
narily, however, we’ll concern ourselves only with correct algorithms. 
An algorithm can be speciûed in English, as a computer program, or even as 

a hardware design. The only requirement is that the speciûcation must provide a 
precise description of the computational procedure to be followed. 

What kinds of problems are solved by algorithms? 

Sorting is by no means the only computational problem for which algorithms have 
been developed. (You probably suspected as much when you saw the size of this 
book.) Practical applications of algorithms are ubiquitous and include the follow- 
ing examples: 
 The Human Genome Project has made great progress toward the goals of iden- 

tifying all the roughly 30,000 genes in human DNA, determining the sequences 
of the roughly 3 billion chemical base pairs that make up human DNA, stor- 
ing this information in databases, and developing tools for data analysis. Each 
of these steps requires sophisticated algorithms. Although the solutions to the 
various problems involved are beyond the scope of this book, many methods to 
solve these biological problems use ideas presented here, enabling scientists to 
accomplish tasks while using resources efûciently. Dynamic programming, as 

1 Sometimes, when the problem context is known, problem instances are themselves simply called 
<problems.= 
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in Chapter 14, is an important technique for solving several of these biological 
problems, particularly ones that involve determining similarity between DNA 
sequences. The savings realized are in time, both human and machine, and in 
money, as more information can be extracted by laboratory techniques. 

 The internet enables people all around the world to quickly access and retrieve 
large amounts of information. With the aid of clever algorithms, sites on the 
internet are able to manage and manipulate this large volume of data. Exam- 
ples of problems that make essential use of algorithms include ûnding good 
routes on which the data travels (techniques for solving such problems appear 
in Chapter 22), and using a search engine to quickly ûnd pages on which par- 
ticular information resides (related techniques are in Chapters 11 and 32). 

 Electronic commerce enables goods and services to be negotiated and ex- 
changed electronically, and it depends on the privacy of personal informa- 
tion such as credit card numbers, passwords, and bank statements. The core 
technologies used in electronic commerce include public-key cryptography and 
digital signatures (covered in Chapter 31), which are based on numerical algo- 
rithms and number theory. 

 Manufacturing and other commercial enterprises often need to allocate scarce 
resources in the most beneûcial way. An oil company might wish to know 
where to place its wells in order to maximize its expected proût. A political 
candidate might want to determine where to spend money buying campaign ad- 
vertising in order to maximize the chances of winning an election. An airline 
might wish to assign crews to üights in the least expensive way possible, mak- 
ing sure that each üight is covered and that government regulations regarding 
crew scheduling are met. An internet service provider might wish to determine 
where to place additional resources in order to serve its customers more effec- 
tively. All of these are examples of problems that can be solved by modeling 
them as linear programs, which Chapter 29 explores. 

Although some of the details of these examples are beyond the scope of this 
book, we do give underlying techniques that apply to these problems and problem 
areas. We also show how to solve many speciûc problems, including the following: 
 You have a road map on which the distance between each pair of adjacent in- 

tersections is marked, and you wish to determine the shortest route from one 
intersection to another. The number of possible routes can be huge, even if you 
disallow routes that cross over themselves. How can you choose which of all 
possible routes is the shortest? You can start by modeling the road map (which 
is itself a model of the actual roads) as a graph (which we will meet in Part VI 
and Appendix B). In this graph, you wish to ûnd the shortest path from one 
vertex to another. Chapter 22 shows how to solve this problem efûciently. 
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 Given a mechanical design in terms of a library of parts, where each part may 
include instances of other parts, list the parts in order so that each part appears 
before any part that uses it. If the design comprises n parts, then there are nŠ 
possible orders, where nŠ denotes the factorial function. Because the factorial 
function grows faster than even an exponential function, you cannot feasibly 
generate each possible order and then verify that, within that order, each part 
appears before the parts using it (unless you have only a few parts). This prob- 
lem is an instance of topological sorting, and Chapter 20 shows how to solve 
this problem efûciently. 

 A doctor needs to determine whether an image represents a cancerous tumor or 
a benign one. The doctor has available images of many other tumors, some of 
which are known to be cancerous and some of which are known to be benign. 
A cancerous tumor is likely to be more similar to other cancerous tumors than 
to benign tumors, and a benign tumor is more likely to be similar to other be- 
nign tumors. By using a clustering algorithm, as in Chapter 33, the doctor can 
identify which outcome is more likely. 

 You need to compress a large ûle containing text so that it occupies less space. 
Many ways to do so are known, including <LZW compression,= which looks for 
repeating character sequences. Chapter 15 studies a different approach, <Huff- 
man coding,= which encodes characters by bit sequences of various lengths, 
with characters occurring more frequently encoded by shorter bit sequences. 

These lists are far from exhaustive (as you again have probably surmised from 
this book’s heft), but they exhibit two characteristics common to many interesting 
algorithmic problems: 
1. They have many candidate solutions, the overwhelming majority of which do 

not solve the problem at hand. Finding one that does, or one that is <best,= with- 
out explicitly examining each possible solution, can present quite a challenge. 

2. They have practical applications. Of the problems in the above list, ûnding the 
shortest path provides the easiest examples. A transportation ûrm, such as a 
trucking or railroad company, has a ûnancial interest in ûnding shortest paths 
through a road or rail network because taking shorter paths results in lower 
labor and fuel costs. Or a routing node on the internet might need to ûnd the 
shortest path through the network in order to route a message quickly. Or a 
person wishing to drive from New York to Boston might want to ûnd driving 
directions using a navigation app. 
Not every problem solved by algorithms has an easily identiûed set of candi- 

date solutions. For example, given a set of numerical values representing samples 
of a signal taken at regular time intervals, the discrete Fourier transform converts 
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the time domain to the frequency domain. That is, it approximates the signal as a 
weighted sum of sinusoids, producing the strength of various frequencies which, 
when summed, approximate the sampled signal. In addition to lying at the heart of 
signal processing, discrete Fourier transforms have applications in data compres- 
sion and multiplying large polynomials and integers. Chapter 30 gives an efûcient 
algorithm, the fast Fourier transform (commonly called the FFT), for this problem. 
The chapter also sketches out the design of a hardware FFT circuit. 

Data structures 
This book also presents several data structures. A data structure is a way to store 
and organize data in order to facilitate access and modiûcations. Using the appro- 
priate data structure or structures is an important part of algorithm design. No sin- 
gle data structure works well for all purposes, and so you should know the strengths 
and limitations of several of them. 

Technique 
Although you can use this book as a <cookbook= for algorithms, you might some- 
day encounter a problem for which you cannot readily ûnd a published algorithm 
(many of the exercises and problems in this book, for example). This book will 
teach you techniques of algorithm design and analysis so that you can develop al- 
gorithms on your own, show that they give the correct answer, and analyze their ef- 
ûciency. Different chapters address different aspects of algorithmic problem solv- 
ing. Some chapters address speciûc problems, such as ûnding medians and order 
statistics in Chapter 9, computing minimum spanning trees in Chapter 21, and de- 
termining a maximum üow in a network in Chapter 24. Other chapters introduce 
techniques, such as divide-and-conquer in Chapters 2 and 4, dynamic programming 
in Chapter 14, and amortized analysis in Chapter 16. 

Hard problems 
Most of this book is about efûcient algorithms. Our usual measure of efûciency 
is speed: how long does an algorithm take to produce its result? There are some 
problems, however, for which we know of no algorithm that runs in a reasonable 
amount of time. Chapter 34 studies an interesting subset of these problems, which 
are known as NP-complete. 
Why are NP-complete problems interesting? First, although no efûcient algo- 

rithm for an NP-complete problem has ever been found, nobody has ever proven 
that an efûcient algorithm for one cannot exist. In other words, no one knows 
whether efûcient algorithms exist for NP-complete problems. Second, the set of 
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NP-complete problems has the remarkable property that if an efûcient algorithm 
exists for any one of them, then efûcient algorithms exist for all of them. This re- 
lationship among the NP-complete problems makes the lack of efûcient solutions 
all the more tantalizing. Third, several NP-complete problems are similar, but not 
identical, to problems for which we do know of efûcient algorithms. Computer 
scientists are intrigued by how a small change to the problem statement can cause 
a big change to the efûciency of the best known algorithm. 
You should know about NP-complete problems because some of them arise sur- 

prisingly often in real applications. If you are called upon to produce an efûcient 
algorithm for an NP-complete problem, you are likely to spend a lot of time in a 
fruitless search. If, instead, you can show that the problem is NP-complete, you 
can spend your time developing an efûcient approximation algorithm, that is, an 
algorithm that gives a good, but not necessarily the best possible, solution. 

As a concrete example, consider a delivery company with a central depot. Each 
day, it loads up delivery trucks at the depot and sends them around to deliver goods 
to several addresses. At the end of the day, each truck must end up back at the depot 
so that it is ready to be loaded for the next day. To reduce costs, the company wants 
to select an order of delivery stops that yields the lowest overall distance traveled by 
each truck. This problem is the well-known <traveling-salesperson problem,= and it 
is NP-complete. 2 It has no known efûcient algorithm. Under certain assumptions, 
however, we know of efûcient algorithms that compute overall distances close to 
the smallest possible. Chapter 35 discusses such <approximation algorithms.= 

Alternative computing models 
For many years, we could count on processor clock speeds increasing at a steady 
rate. Physical limitations present a fundamental roadblock to ever-increasing clock 
speeds, however: because power density increases superlinearly with clock speed, 
chips run the risk of melting once their clock speeds become high enough. In or- 
der to perform more computations per second, therefore, chips are being designed 
to contain not just one but several processing <cores.= We can liken these multi- 
core computers to several sequential computers on a single chip. In other words, 
they are a type of <parallel computer.= In order to elicit the best performance 
from multicore computers, we need to design algorithms with parallelism in mind. 
Chapter 26 presents a model for =task-parallel= algorithms, which take advantage 
of multiple processing cores. This model has advantages from both theoretical and 

2 To be precise, only decision problems4those with a <yes/no= answer4can be NP-complete. The 
decision version of the traveling salesperson problem asks whether there exists an order of stops 
whose distance totals at most a given amount. 
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practical standpoints, and many modern parallel-programming platforms embrace 
something similar to this model of parallelism. 

Most of the examples in this book assume that all of the input data are available 
when an algorithm begins running. Much of the work in algorithm design makes 
the same assumption. For many important real-world examples, however, the input 
actually arrives over time, and the algorithm must decide how to proceed without 
knowing what data will arrive in the future. In a data center, jobs are constantly 
arriving and departing, and a scheduling algorithm must decide when and where to 
run a job, without knowing what jobs will be arriving in the future. Trafûc must 
be routed in the internet based on the current state, without knowing about where 
trafûc will arrive in the future. Hospital emergency rooms make triage decisions 
about which patients to treat ûrst without knowing when other patients will be 
arriving in the future and what treatments they will need. Algorithms that receive 
their input over time, rather than having all the input present at the start, are online 
algorithms, which Chapter 27 examines. 

Exercises 
1.1-1 
Describe your own real-world example that requires sorting. Describe one that 
requires ûnding the shortest distance between two points. 
1.1-2 
Other than speed, what other measures of efûciency might you need to consider in 
a real-world setting? 
1.1-3 
Select a data structure that you have seen, and discuss its strengths and limitations. 
1.1-4 
How are the shortest-path and traveling-salesperson problems given above similar? 
How are they different? 
1.1-5 
Suggest a real-world problem in which only the best solution will do. Then come 
up with one in which <approximately= the best solution is good enough. 
1.1-6 
Describe a real-world problem in which sometimes the entire input is available 
before you need to solve the problem, but other times the input is not entirely 
available in advance and arrives over time. 
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1.2 Algorithms as a technology 

If computers were inûnitely fast and computer memory were free, would you have 
any reason to study algorithms? The answer is yes, if for no other reason than that 
you would still like to be certain that your solution method terminates and does so 
with the correct answer. 
If computers were inûnitely fast, any correct method for solving a problem 

would do. You would probably want your implementation to be within the bounds 
of good software engineering practice (for example, your implementation should 
be well designed and documented), but you would most often use whichever 
method was the easiest to implement. 
Of course, computers may be fast, but they are not inûnitely fast. Computing 

time is therefore a bounded resource, which makes it precious. Although the saying 
goes, <Time is money,= time is even more valuable than money: you can get back 
money after you spend it, but once time is spent, you can never get it back. Memory 
may be inexpensive, but it is neither inûnite nor free. You should choose algorithms 
that use the resources of time and space efûciently. 

Efûciency 

Different algorithms devised to solve the same problem often differ dramatically in 
their efûciency. These differences can be much more signiûcant than differences 
due to hardware and software. 

As an example, Chapter 2 introduces two algorithms for sorting. The ûrst, 
known as insertion sort, takes time roughly equal to c 1 n 2 to sort n items, where c 1 
is a constant that does not depend on n. That is, it takes time roughly proportional 
to n 2 . The second, merge sort, takes time roughly equal to c 2 n lg n, where lg n 
stands for log 2 n and c 2 is another constant that also does not depend on n. Inser- 
tion sort typically has a smaller constant factor than merge sort, so that c 1 < c 2 . 
We’ll see that the constant factors can have far less of an impact on the running 
time than the dependence on the input size n. Let’s write insertion sort’s running 
time as c 1 n  n and merge sort’s running time as c 2 n  lg n. Then we see that where 
insertion sort has a factor of n in its running time, merge sort has a factor of lg n, 
which is much smaller. For example, when n is 1000, lg n is approximately 10, and 
when n is 1,000,000, lg n is approximately only 20. Although insertion sort usu- 
ally runs faster than merge sort for small input sizes, once the input size n becomes 
large enough, merge sort’s advantage of lg n versus n more than compensates for 
the difference in constant factors. No matter how much smaller c 1 is than c 2 , there 
is always a crossover point beyond which merge sort is faster. 
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For a concrete example, let us pit a faster computer (computer A) running inser- 
tion sort against a slower computer (computer B) running merge sort. They each 
must sort an array of 10 million numbers. (Although 10 million numbers might 
seem like a lot, if the numbers are eight-byte integers, then the input occupies 
about 80 megabytes, which ûts in the memory of even an inexpensive laptop com- 
puter many times over.) Suppose that computer A executes 10 billion instructions 
per second (faster than any single sequential computer at the time of this writing) 
and computer B executes only 10 million instructions per second (much slower 
than most contemporary computers), so that computer A is 1000 times faster than 
computer B in raw computing power. To make the difference even more dramatic, 
suppose that the world’s craftiest programmer codes insertion sort in machine lan- 
guage for computer A, and the resulting code requires 2n 2 instructions to sort n 
numbers. Suppose further that just an average programmer implements merge 
sort, using a high-level language with an inefûcient compiler, with the resulting 
code taking 50n lg n instructions. To sort 10 million numbers, computer A takes 
2  .10 7 / 2 instructions 
10 10 instructions/second D 20,000 seconds (more than 5:5 hours) ; 

while computer B takes 
50  10 7 lg 10 7 instructions 
10 7 instructions/second  1163 seconds (under 20 minutes) : 

By using an algorithm whose running time grows more slowly, even with a poor 
compiler, computer B runs more than 17 times faster than computer A! The ad- 
vantage of merge sort is even more pronounced when sorting 100 million numbers: 
where insertion sort takes more than 23 days, merge sort takes under four hours. 
Although 100 million might seem like a large number, there are more than 100 mil- 
lion web searches every half hour, more than 100 million emails sent every minute, 
and some of the smallest galaxies (known as ultra-compact dwarf galaxies) con- 
tain about 100 million stars. In general, as the problem size increases, so does the 
relative advantage of merge sort. 

Algorithms and other technologies 
The example above shows that you should consider algorithms, like computer hard- 
ware, as a technology. Total system performance depends on choosing efûcient 
algorithms as much as on choosing fast hardware. Just as rapid advances are being 
made in other computer technologies, they are being made in algorithms as well. 

You might wonder whether algorithms are truly that important on contemporary 
computers in light of other advanced technologies, such as 
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 advanced computer architectures and fabrication technologies, 
 easy-to-use, intuitive, graphical user interfaces (GUIs), 
 object-oriented systems, 
 integrated web technologies, 
 fast networking, both wired and wireless, 
 machine learning, 
 and mobile devices. 
The answer is yes. Although some applications do not explicitly require algorith- 
mic content at the application level (such as some simple, web-based applications), 
many do. For example, consider a web-based service that determines how to travel 
from one location to another. Its implementation would rely on fast hardware, a 
graphical user interface, wide-area networking, and also possibly on object ori- 
entation. It would also require algorithms for operations such as ûnding routes 
(probably using a shortest-path algorithm), rendering maps, and interpolating ad- 
dresses. 

Moreover, even an application that does not require algorithmic content at the 
application level relies heavily upon algorithms. Does the application rely on fast 
hardware? The hardware design used algorithms. Does the application rely on 
graphical user interfaces? The design of any GUI relies on algorithms. Does the 
application rely on networking? Routing in networks relies heavily on algorithms. 
Was the application written in a language other than machine code? Then it was 
processed by a compiler, interpreter, or assembler, all of which make extensive use 
of algorithms. Algorithms are at the core of most technologies used in contempo- 
rary computers. 

Machine learning can be thought of as a method for performing algorithmic tasks 
without explicitly designing an algorithm, but instead inferring patterns from data 
and thereby automatically learning a solution. At ûrst glance, machine learning, 
which automates the process of algorithmic design, may seem to make learning 
about algorithms obsolete. The opposite is true, however. Machine learning is 
itself a collection of algorithms, just under a different name. Furthermore, it cur- 
rently seems that the successes of machine learning are mainly for problems for 
which we, as humans, do not really understand what the right algorithm is. Promi- 
nent examples include computer vision and automatic language translation. For 
algorithmic problems that humans understand well, such as most of the problems 
in this book, efûcient algorithms designed to solve a speciûc problem are typically 
more successful than machine-learning approaches. 
Data science is an interdisciplinary ûeld with the goal of extracting knowledge 

and insights from structured and unstructured data. Data science uses methods 
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from statistics, computer science, and optimization. The design and analysis of 
algorithms is fundamental to the ûeld. The core techniques of data science, which 
overlap signiûcantly with those in machine learning, include many of the algo- 
rithms in this book. 
Furthermore, with the ever-increasing capacities of computers, we use them to 

solve larger problems than ever before. As we saw in the above comparison be- 
tween insertion sort and merge sort, it is at larger problem sizes that the differences 
in efûciency between algorithms become particularly prominent. 

Having a solid base of algorithmic knowledge and technique is one characteristic 
that deûnes the truly skilled programmer. With modern computing technology, you 
can accomplish some tasks without knowing much about algorithms, but with a 
good background in algorithms, you can do much, much more. 

Exercises 
1.2-1 
Give an example of an application that requires algorithmic content at the applica- 
tion level, and discuss the function of the algorithms involved. 
1.2-2 
Suppose that for inputs of size n on a particular computer, insertion sort runs in 8n 2 

steps and merge sort runs in 64n lg n steps. For which values of n does insertion 
sort beat merge sort? 
1.2-3 
What is the smallest value of n such that an algorithm whose running time is 100n 2 

runs faster than an algorithm whose running time is 2 n on the same machine? 

Problems 

1-1 Comparison of running times 
For each function f .n/ and time t in the following table, determine the largest 
size n of a problem that can be solved in time t , assuming that the algorithm to 
solve the problem takes f .n/ microseconds. 
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1 1 1 1 1 1 1 
second minute hour day month year century 

lg n 
p 
n 
n 

n lg n 
n 2 

n 3 

2 n 

nŠ 

Chapter notes 

There are many excellent texts on the general topic of algorithms, including those 
by Aho, Hopcroft, and Ullman [5, 6], Dasgupta, Papadimitriou, and Vazirani [107], 
Edmonds [133], Erickson [135], Goodrich and Tamassia [195, 196], Kleinberg 
and Tardos [257], Knuth [259, 260, 261, 262, 263], Levitin [298], Louridas [305], 
Mehlhorn and Sanders [325], Mitzenmacher and Upfal [331], Neapolitan [342], 
Roughgarden [385, 386, 387, 388], Sanders, Mehlhorn, Dietzfelbinger, and De- 
mentiev [393], Sedgewick and Wayne [402], Skiena [414], Soltys-Kulinicz [419], 
Wilf [455], and Williamson and Shmoys [459]. Some of the more practical as- 
pects of algorithm design are discussed by Bentley [49, 50, 51], Bhargava [54], 
Kochenderfer and Wheeler [268], and McGeoch [321]. Surveys of the ûeld of al- 
gorithms can also be found in books by Atallah and Blanton [27, 28] and Mehta and 
Sahhi [326]. For less technical material, see the books by Christian and Grifûths 
[92], Cormen [104], Erwig [136], MacCormick [307], and V¨ ocking et al. [448]. 
Overviews of the algorithms used in computational biology can be found in books 
by Jones and Pevzner [240], Elloumi and Zomaya [134], and Marchisio [315]. 


