
11 Hash Tables

Many applications require a dynamic set that supports only the dictionary opera-
tions I NSERT, SEARCH, and DELETE. For example, a compiler that translates a
programming language maintains a symbol table, in which the keys of elements
are arbitrary character strings corresponding to identiûers in the language. A hash
table is an effective data structure for implementing dictionaries. Although search-
ing for an element in a hash table can take as long as searching for an element in a
linked list4‚.n/ time in the worst case4in practice, hashing performs extremely
well. Under reasonable assumptions, the average time to search for an element in
a hash table is O.1/. Indeed, the built-in dictionaries of Python are implemented
with hash tables.

A hash table generalizes the simpler notion of an ordinary array. Directly ad-
dressing into an ordinary array takes advantage of the O.1/ access time for any
array element. Section 11.1 discusses direct addressing in more detail. To use di-
rect addressing, you must be able to allocate an array that contains a position for
every possible key.

When the number of keys actually stored is small relative to the total number
of possible keys, hash tables become an effective alternative to directly address-
ing an array, since a hash table typically uses an array of size proportional to the
number of keys actually stored. Instead of using the key as an array index directly,
we compute the array index from the key. Section 11.2 presents the main ideas,
focusing on <chaining= as a way to handle <collisions,= in which more than one
key maps to the same array index. Section 11.3 describes how to compute array
indices from keys using hash functions. We present and analyze several variations
on the basic theme. Section 11.4 looks at <open addressing,= which is another way
to deal with collisions. The bottom line is that hashing is an extremely effective
and practical technique: the basic dictionary operations require only O.1/ time on
the average. Section 11.5 discusses the hierarchical memory systems of modern
computer systems have and illustrates how to design hash tables that work well in
such systems.

11.1 Direct-address tables 273

11.1 Direct-address tables

Direct addressing is a simple technique that works well when the universe U of
keys is reasonably small. Suppose that an application needs a dynamic set in which
each element has a distinct key drawn from the universe U D f0; 1; : : : ;m  1g,
where m is not too large.

To represent the dynamic set, you can use an array, or direct-address table, de-
noted by T Œ0 W m  1�, in which each position, or slot, corresponds to a key in the
universe U . Figure 11.1 illustrates this approach. Slot k points to an element in the
set with key k. If the set contains no element with key k, then T Œk� D NIL.

The dictionary operations DIRECT-ADDRESS-SEARCH, DIRECT-ADDRESS-
I NSERT, and DIRECT-ADDRESS-DELETE on the following page are trivial to im-
plement. Each takes only O.1/ time.
For some applications, the direct-address table itself can hold the elements in

the dynamic set. That is, rather than storing an element’s key and satellite data in
an object external to the direct-address table, with a pointer from a slot in the table
to the object, save space by storing the object directly in the slot. To indicate an
empty slot, use a special key. Then again, why store the key of the object at all?
The index of the object is its key! Of course, then you’d need some way to tell
whether slots are empty.

T

U
(universe of keys)

K
(actual
keys)

2
3

5 8

1

9 4
0

7
6 2

3

5

8

key satellite data
2

0
1

3

4

5

6

7

8

9

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe
U D f0; 1; : : : ; 9g corresponds to an index into the table. The set K D f2; 3; 5; 8g of actual keys
determines the slots in the table that contain pointers to elements. The other slots, in blue, contain
NIL.

274 Chapter 11 Hash Tables

DIRECT-ADDRESS-SEARCH .T; k/
1 return T Œk�

DIRECT-ADDRESS-I NSERT .T; x/
1 T Œx: key� D x

DIRECT-ADDRESS-DELETE .T; x/
1 T Œx: key� D NIL

Exercises
11.1-1
A dynamic set S is represented by a direct-address table T of length m. Describe
a procedure that ûnds the maximum element of S . What is the worst-case perfor-
mance of your procedure?
11.1-2
A bit vector is simply an array of bits (each either 0 or 1). A bit vector of length m
takes much less space than an array of m pointers. Describe how to use a bit vector
to represent a dynamic set of distinct elements drawn from the set f0; 1; : : : ;m  1g
and with no satellite data. Dictionary operations should run in O.1/ time.
11.1-3
Suggest how to implement a direct-address table in which the keys of stored el-
ements do not need to be distinct and the elements can have satellite data. All
three dictionary operations (I NSERT, DELETE, and SEARCH) should run in O.1/
time. (Don’t forget that DELETE takes as an argument a pointer to an object to be
deleted, not a key.)

? 11.1-4
Suppose that you want to implement a dictionary by using direct addressing on
a huge array. That is, if the array size is m and the dictionary contains at most
n elements at any one time, then m  n. At the start, the array entries may
contain garbage, and initializing the entire array is impractical because of its size.
Describe a scheme for implementing a direct-address dictionary on a huge array.
Each stored object should use O.1/ space; the operations SEARCH, I NSERT, and
DELETE should take O.1/ time each; and initializing the data structure should take
O.1/ time. (Hint: Use an additional array, treated somewhat like a stack whose size
is the number of keys actually stored in the dictionary, to help determine whether
a given entry in the huge array is valid or not.)

11.2 Hash tables 275

11.2 Hash tables

The downside of direct addressing is apparent: if the universe U is large or inûnite,
storing a table T of size jU j may be impractical, or even impossible, given the
memory available on a typical computer. Furthermore, the set K of keys actually
stored may be so small relative to U that most of the space allocated for T would
be wasted.

When the set K of keys stored in a dictionary is much smaller than the uni-
verse U of all possible keys, a hash table requires much less storage than a direct-
address table. Speciûcally, the storage requirement reduces to ‚.jKj/ while main-
taining the beneût that searching for an element in the hash table still requires only
O.1/ time. The catch is that this bound is for the average-case time, 1 whereas for
direct addressing it holds for the worst-case time.

With direct addressing, an element with key k is stored in slot k, but with hash-
ing, we use a hash function h to compute the slot number from the key k, so that
the element goes into slot h.k/. The hash function h maps the universe U of keys
into the slots of a hash table T Œ0 W m  1�:
h W U ! f0; 1; : : : ;m  1g ;

where the size m of the hash table is typically much less than jU j. We say that
an element with key k hashes to slot h.k/, and we also say that h.k/ is the hash
value of key k. Figure 11.2 illustrates the basic idea. The hash function reduces
the range of array indices and hence the size of the array. Instead of a size of jU j,
the array can have size m. An example of a simple, but not particularly good, hash
function is h.k/ D k mod m.

There is one hitch, namely that two keys may hash to the same slot. We call this
situation a collision. Fortunately, there are effective techniques for resolving the
conüict created by collisions.
Of course, the ideal solution is to avoid collisions altogether. We might try to

achieve this goal by choosing a suitable hash function h. One idea is to make h ap-
pear to be <random,= thus avoiding collisions or at least minimizing their number.
The very term <to hash,= evoking images of random mixing and chopping, cap-
tures the spirit of this approach. (Of course, a hash function h must be determin-
istic in that a given input k must always produce the same output h.k/.) Because
jU j > m, however, there must be at least two keys that have the same hash value,

1 The deûnition of <average-case= requires care4are we assuming an input distribution over the
keys, or are we randomizing the choice of hash function itself? We’ll consider both approaches, but
with an emphasis on the use of a randomly chosen hash function.

276 Chapter 11 Hash Tables

T

U
(universe of keys)

K
(actual
keys)

0

m31

k 1

k 2 k 3

k 4 k 5

h(k 1)
h(k 4)

h(k 3)

h(k 2) = h(k 5)

Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k 2 and k 5 map
to the same slot, they collide.

and avoiding collisions altogether is impossible. Thus, although a well-designed,
<random=-looking hash function can reduce the number of collisions, we still need
a method for resolving the collisions that do occur.
The remainder of this section ûrst presents a deûnition of <independent uniform

hashing,= which captures the simplest notion of what it means for a hash function
to be <random.= It then presents and analyzes the simplest collision resolution tech-
nique, called chaining. Section 11.4 introduces an alternative method for resolving
collisions, called open addressing.

Independent uniform hashing
An <ideal= hashing function h would have, for each possible input k in the do-
main U , an output h.k/ that is an element randomly and independently chosen
uniformly from the range f0; 1; : : : ;m  1g. Once a value h.k/ is randomly cho-
sen, each subsequent call to h with the same input k yields the same output h.k/.

We call such an ideal hash function an independent uniform hash function.
Such a function is also often called a random oracle [43]. When hash tables are
implemented with an independent uniform hash function, we say we are using
independent uniform hashing.

Independent uniform hashing is an ideal theoretical abstraction, but it is not
something that can reasonably be implemented in practice. Nonetheless, we’ll
analyze the efûciency of hashing under the assumption of independent uniform
hashing and then present ways of achieving useful practical approximations to this
ideal.

11.2 Hash tables 277

T

U
(universe of keys)

K
(actual
keys)

k 1

k 2 k 3

k 4 k 5

k 6

k 7

k 8

k 1

k 2

k 3

k 4

k 5

k 6

k 7

k 8

Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T Œj � points to a
linked list of all the keys whose hash value is j . For example, h.k 1 / D h.k 4 / and h.k 5 / D h.k 2 / D
h.k 7 /. The list can be either singly or doubly linked. We show it as doubly linked because deletion
may be faster that way when the deletion procedure knows which list element (not just which key) is
to be deleted.

Collision resolution by chaining
At a high level, you can think of hashing with chaining as a nonrecursive form
of divide-and-conquer: the input set of n elements is divided randomly into m
subsets, each of approximate size n=m. A hash function determines which subset
an element belongs to. Each subset is managed independently as a list.
Figure 11.3 shows the idea behind chaining: each nonempty slot points to a

linked list, and all the elements that hash to the same slot go into that slot’s linked
list. Slot j contains a pointer to the head of the list of all stored elements with hash
value j . If there are no such elements, then slot j contains NIL.

When collisions are resolved by chaining, the dictionary operations are straight-
forward to implement. They appear on the next page and use the linked-list pro-
cedures from Section 10.2. The worst-case running time for insertion is O.1/.
The insertion procedure is fast in part because it assumes that the element x be-
ing inserted is not already present in the table. To enforce this assumption, you
can search (at additional cost) for an element whose key is x: key before inserting.
For searching, the worst-case running time is proportional to the length of the list.
(We’ll analyze this operation more closely below.) Deletion takes O.1/ time if the
lists are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-DELETE takes
as input an element x and not its key k, no search is needed. If the hash table
supports deletion, then its linked lists should be doubly linked in order to delete an
item quickly. If the lists were only singly linked, then by Exercise 10.2-1, deletion

278 Chapter 11 Hash Tables

CHAINED-HASH-I NSERT .T; x/
1 LIST-PREPEND .T Œh.x: key/�; x/

CHAINED-HASH-SEARCH .T; k/
1 return LIST-SEARCH .T Œh.k/�; k/

CHAINED-HASH-DELETE .T; x/
1 LIST-DELETE .T Œh.x: key/�; x/

could take time proportional to the length of the list. With singly linked lists, both
deletion and searching would have the same asymptotic running times.)

Analysis of hashing with chaining
How well does hashing with chaining perform? In particular, how long does it take
to search for an element with a given key?
Given a hash table T with m slots that stores n elements, we deûne the load

factor ˛ for T as n=m, that is, the average number of elements stored in a chain.
Our analysis will be in terms of ˛, which can be less than, equal to, or greater
than 1.
The worst-case behavior of hashing with chaining is terrible: all n keys hash

to the same slot, creating a list of length n. The worst-case time for searching is
thus ‚.n/ plus the time to compute the hash function4no better than using one
linked list for all the elements. We clearly don’t use hash tables for their worst-case
performance.
The average-case performance of hashing depends on how well the hash func-

tion h distributes the set of keys to be stored among the m slots, on the average
(meaning with respect to the distribution of keys to be hashed and with respect to
the choice of hash function, if this choice is randomized). Section 11.3 discusses
these issues, but for now we assume that any given element is equally likely to
hash into any of the m slots. That is, the hash function is uniform. We further
assume that where a given element hashes to is independent of where any other el-
ements hash to. In other words, we assume that we are using independent uniform
hashing.

Because hashes of distinct keys are assumed to be independent, independent uni-
form hashing is universal: the chance that any two distinct keys k 1 and k 2 collide is
at most 1=m. Universality is important in our analysis and also in the speciûcation
of universal families of hash functions, which we’ll see in Section 11.3.2.

For j D 0; 1; : : : ;m  1, denote the length of the list T Œj � by n j , so that

11.2 Hash tables 279

n D n 0 C n 1 C    C n m1 ; (11.1)
and the expected value of n j is E Œn j � D ˛ D n=m.

We assume that O.1/ time sufûces to compute the hash value h.k/, so that
the time required to search for an element with key k depends linearly on the
length n h.k/ of the list T Œh.k/�. Setting aside the O.1/ time required to compute
the hash function and to access slot h.k/, we’ll consider the expected number of
elements examined by the search algorithm, that is, the number of elements in the
list T Œh.k/� that the algorithm checks to see whether any have a key equal to k. We
consider two cases. In the ûrst, the search is unsuccessful: no element in the table
has key k. In the second, the search successfully ûnds an element with key k.

Theorem 11.1
In a hash table in which collisions are resolved by chaining, an unsuccessful search
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform
hashing.

Proof Under the assumption of independent uniform hashing, any key k not al-
ready stored in the table is equally likely to hash to any of the m slots. The expected
time to search unsuccessfully for a key k is the expected time to search to the end of
list T Œh.k/�, which has expected length E Œn h.k/ � D ˛. Thus, the expected number
of elements examined in an unsuccessful search is ˛, and the total time required
(including the time for computing h.k/) is ‚.1 C ˛/.

The situation for a successful search is slightly different. An unsuccessful search
is equally likely to go to any slot of the hash table. A successful search, however,
cannot go to an empty slot, since it is for an element that is present in one of the
linked lists. We assume that the element searched for is equally likely to be any
one of the elements in the table, so the longer the list, the more likely that the
search is for one of its elements. Even so, the expected search time still turns out
to be ‚.1 C ˛/.

Theorem 11.2
In a hash table in which collisions are resolved by chaining, a successful search
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform
hashing.

Proof We assume that the element being searched for is equally likely to be any
of the n elements stored in the table. The number of elements examined during
a successful search for an element x is 1 more than the number of elements that
appear before x in x ’s list. Because new elements are placed at the front of the list,

280 Chapter 11 Hash Tables

elements before x in the list were all inserted after x was inserted. Let x i denote
the i th element inserted into the table, for i D 1; 2; : : : ; n, and let k i D x i : key.
Our analysis uses indicator random variables extensively. For each slot q in the

table and for each pair of distinct keys k i and k j , we deûne the indicator random
variable
X ij q D I fthe search is for x i , h.k i / D q, and h.k j / D q g :

That is, X ij q D 1 when keys k i and k j collide at slot q and the search is for
element x i . Because Pr fthe search is for x i g D 1=n, Pr fh.k i / D qg D 1=m,
Pr fh.k j / D qg D 1=m, and these events are all independent, we have that
Pr fX ij q D 1g D 1=nm 2 . Lemma 5.1 on page 130 gives E ŒX ij q � D 1=nm 2 .
Next, we deûne, for each element x j , the indicator random variable

Y j D I fx j appears in a list prior to the element being searched forg

D
m1 X

qD0

j 1 X

i D1

X ij q ;

since at most one of the X ij q equals 1, namely when the element x i being searched
for belongs to the same list as x j (pointed to by slot q), and i < j (so that x i
appears after x j in the list).
Our ûnal random variable is Z, which counts how many elements appear in the

list prior to the element being searched for:

Z D
n X

j D1

Y j :

Because we must count the element being searched for as well as all those pre-
ceding it in its list, we wish to compute E ŒZ C 1�. Using linearity of expectation
(equation (C.24) on page 1192), we have

E ŒZ C 1� D E
"

1 C
n X

j D1

Y j

D 1 C E
"

n X

j D1

m1 X

qD0

j 1 X

i D1

X ij q

D 1 C E
"
m1 X

qD0

n X

j D1

j 1 X

i D1

X ij q

D 1 C
m1 X

qD0

n X

j D1

j 1 X

i D1

E ŒX ij q � (by linearity of expectation)

11.2 Hash tables 281

D 1 C
m1 X

qD0

n X

j D1

j 1 X

i D1

1
nm 2

D 1 C m  n.n  1/
2

 1
nm 2

(by equation (A.2) on page 1141)

D 1 C
n  1
2m

D 1 C
n
2m


1
2m

D 1 C
˛
2


˛
2n
:

Thus, the total time required for a successful search (including the time for com-
puting the hash function) is ‚.2 C ˛=2  ˛=2n/ D ‚.1 C ˛/.

What does this analysis mean? If the number of elements in the table is at
most proportional to the number of hash-table slots, we have n D O.m/ and,
consequently, ˛ D n=m D O.m/=m D O.1/. Thus, searching takes constant time
on average. Since insertion takes O.1/ worst-case time and deletion takes O.1/
worst-case time when the lists are doubly linked (assuming that the list element to
be deleted is known, and not just its key), we can support all dictionary operations
in O.1/ time on average.

The analysis in the preceding two theorems depends only on two essential prop-
erties of independent uniform hashing: uniformity (each key is equally likely to
hash to any one of the m slots), and independence (so any two distinct keys collide
with probability 1=m).

Exercises
11.2-1
You use a hash function h to hash n distinct keys into an array T of length m.
Assuming independent uniform hashing, what is the expected number of colli-
sions? More precisely, what is the expected cardinality of ˚ fk 1 ; k 2 g W k 1 ¤ k 2

and h.k 1 / D h.k 2 /
 ?

11.2-2
Consider a hash table with 9 slots and the hash function h.k/ D k mod 9. Demon-
strate what happens upon inserting the keys 5; 28; 19; 15; 20; 33; 12; 17; 10 with
collisions resolved by chaining.

282 Chapter 11 Hash Tables

11.2-3
Professor Marley hypothesizes that he can obtain substantial performance gains by
modifying the chaining scheme to keep each list in sorted order. How does the pro-
fessor’s modiûcation affect the running time for successful searches, unsuccessful
searches, insertions, and deletions?
11.2-4
Suggest how to allocate and deallocate storage for elements within the hash table
itself by creating a <free list=: a linked list of all the unused slots. Assume that
one slot can store a üag and either one element plus a pointer or two pointers. All
dictionary and free-list operations should run in O.1/ expected time. Does the free
list need to be doubly linked, or does a singly linked free list sufûce?
11.2-5
You need to store a set of n keys in a hash table of size m. Show that if the keys
are drawn from a universe U with jU j > .n  1/m, then U has a subset of size n
consisting of keys that all hash to the same slot, so that the worst-case searching
time for hashing with chaining is ‚.n/.
11.2-6
You have stored n keys in a hash table of size m, with collisions resolved by chain-
ing, and you know the length of each chain, including the length L of the longest
chain. Describe a procedure that selects a key uniformly at random from among
the keys in the hash table and returns it in expected time O.L  .1 C 1=˛//.

11.3 Hash functions

For hashing to work well, it needs a good hash function. Along with being efû-
ciently computable, what properties does a good hash function have? How do you
design good hash functions?
This section ûrst attempts to answer these questions based on two ad hoc ap-

proaches for creating hash functions: hashing by division and hashing by multipli-
cation. Although these methods work well for some sets of input keys, they are
limited because they try to provide a single ûxed hash function that works well on
any data4an approach called static hashing.
We then see that provably good average-case performance for any data can be

obtained by designing a suitable family of hash functions and choosing a hash func-
tion at random from this family at runtime, independent of the data to be hashed.
The approach we examine is called random hashing. A particular kind of random

11.3 Hash functions 283

hashing, universal hashing, works well. As we saw with quicksort in Chapter 7,
randomization is a powerful algorithmic design tool.

What makes a good hash function?

A good hash function satisûes (approximately) the assumption of independent uni-
form hashing: each key is equally likely to hash to any of the m slots, indepen-
dently of where any other keys have hashed to. What does <equally likely= mean
here? If the hash function is ûxed, any probabilities would have to be based on the
probability distribution of the input keys.

Unfortunately, you typically have no way to check this condition, unless you
happen to know the probability distribution from which the keys are drawn. More-
over, the keys might not be drawn independently.
Occasionally you might know the distribution. For example, if you know that

the keys are random real numbers k independently and uniformly distributed in the
range 0 හ k < 1, then the hash function
h.k/ D bkmc

satisûes the condition of independent uniform hashing.
A good static hashing approach derives the hash value in a way that you expect

to be independent of any patterns that might exist in the data. For example, the
<division method= (discussed in Section 11.3.1) computes the hash value as the
remainder when the key is divided by a speciûed prime number. This method may
give good results, if you (somehow) choose a prime number that is unrelated to any
patterns in the distribution of keys.
Random hashing, described in Section 11.3.2, picks the hash function to be used

at random from a suitable family of hashing functions. This approach removes
any need to know anything about the probability distribution of the input keys, as
the randomization necessary for good average-case behavior then comes from the
(known) random process used to pick the hash function from the family of hash
functions, rather than from the (unknown) process used to create the input keys.
We recommend that you use random hashing.

Keys are integers, vectors, or strings
In practice, a hash function is designed to handle keys that are one of the following
two types:
 A short nonnegative integer that ûts in a w-bit machine word. Typical values

for w would be 32 or 64.

284 Chapter 11 Hash Tables

 A short vector of nonnegative integers, each of bounded size. For example,
each element might be an 8-bit byte, in which case the vector is often called a
(byte) string. The vector might be of variable length.

To begin, we assume that keys are short nonnegative integers. Handling vector
keys is more complicated and discussed in Sections 11.3.5 and 11.5.2.

11.3.1 Static hashing

Static hashing uses a single, ûxed hash function. The only randomization available
is through the (usually unknown) distribution of input keys. This section discusses
two standard approaches for static hashing: the division method and the multiplica-
tion method. Although static hashing is no longer recommended, the multiplication
method also provides a good foundation for <nonstatic= hashing4better known as
random hashing4where the hash function is chosen at random from a suitable
family of hash functions.

The division method

The division method for creating hash functions maps a key k into one of m slots
by taking the remainder of k divided by m. That is, the hash function is
h.k/ D k mod m :
For example, if the hash table has size m D 12 and the key is k D 100, then
h.k/ D 4. Since it requires only a single division operation, hashing by division is
quite fast.

The division method may work well when m is a prime not too close to an exact
power of 2. There is no guarantee that this method provides good average-case
performance, however, and it may complicate applications since it constrains the
size of the hash tables to be prime.

The multiplication method

The general multiplication method for creating hash functions operates in two
steps. First, multiply the key k by a constant A in the range 0 < A < 1 and extract
the fractional part of kA. Then, multiply this value by m and take the üoor of the
result. That is, the hash function is
h.k/ D bm.kA mod 1/c ;

where <kA mod 1= means the fractional part of kA, that is, kAbkAc. The general
multiplication method has the advantage that the value of m is not critical and you
can choose it independently of how you choose the multiplicative constant A.

11.3 Hash functions 285

× a D A2 w

w bits

k

r 0 r 1

h a .k/
extract ` bits

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of
the key k is multiplied by the w-bit value a D A  2 w . The ` highest-order bits of the lower w-bit
half of the product form the desired hash value h a .k/.

The multiply-shift method

In practice, the multiplication method is best in the special case where the num-
ber m of hash-table slots is an exact power of 2, so that m D 2 ` for some integer `,
where ` හ w and w is the number of bits in a machine word. If you choose a ûxed
w-bit positive integer a D A2 w , where 0 < A < 1 as in the multiplication method
so that a is in the range 0 < a < 2 w , you can implement the function on most
computers as follows. We assume that a key k ûts into a single w-bit word.
Referring to Figure 11.4, ûrst multiply k by the w-bit integer a. The result is a

2w-bit value r 1 2 w C r 0 , where r 1 is the high-order w-bit word of the product and
r 0 is the low-order w-bit word of the product. The desired `-bit hash value consists
of the ` most signiûcant bits of r 0 . (Since r 1 is ignored, the hash function can be
implemented on a computer that produces only a w-bit product given two w-bit
inputs, that is, where the multiplication operation computes modulo 2 w .)
In other words, you deûne the hash function h D h a , where

h a .k/ D .ka mod 2 w / o .w  `/ (11.2)
for a ûxed nonzero w-bit value a. Since the product ka of two w-bit words occu-
pies 2w bits, taking this product modulo 2 w zeroes out the high-order w bits (r 1),
leaving only the low-order w bits (r 0). The o operator performs a logical right
shift by w  ` bits, shifting zeros into the vacated positions on the left, so that the
` most signiûcant bits of r 0 move into the ` rightmost positions. (It’s the same as
dividing by 2 w` and taking the üoor of the result.) The resulting value equals the
` most signiûcant bits of r 0 . The hash function h a can be implemented with three
machine instructions: multiplication, subtraction, and logical right shift.

As an example, suppose that k D 123456, ` D 14, m D 2 14 D 16384, and
w D 32. Suppose further that we choose a D 2654435769 (following a suggestion

286 Chapter 11 Hash Tables

of Knuth [261]). Then ka D 327706022297664 D .76300  2 32 / C 17612864, and
so r 1 D 76300 and r 0 D 17612864. The 14 most signiûcant bits of r 0 yield the
value h a .k/ D 67.
Even though the multiply-shift method is fast, it doesn’t provide any guarantee

of good average-case performance. The universal hashing approach presented in
the next section provides such a guarantee. A simple randomized variant of the
multiply-shift method works well on the average, when the program begins by
picking a as a randomly chosen odd integer.

11.3.2 Random hashing

Suppose that a malicious adversary chooses the keys to be hashed by some ûxed
hash function. Then the adversary can choose n keys that all hash to the same slot,
yielding an average retrieval time of ‚.n/. Any static hash function is vulnerable to
such terrible worst-case behavior. The only effective way to improve the situation
is to choose the hash function randomly in a way that is independent of the keys
that are actually going to be stored. This approach is called random hashing. A
special case of this approach, called universal hashing, can yield provably good
performance on average when collisions are handled by chaining, no matter which
keys the adversary chooses.

To use random hashing, at the beginning of program execution you select the
hash function at random from a suitable family of functions. As in the case of
quicksort, randomization guarantees that no single input always evokes worst-case
behavior. Because you randomly select the hash function, the algorithm can be-
have differently on each execution, even for the same set of keys to be hashed,
guaranteeing good average-case performance.

Let H be a ûnite family of hash functions that map a given universe U of keys
into the range f0; 1; : : : ;m  1g. Such a family is said to be universal if for each
pair of distinct keys k 1 ; k 2 2 U , the number of hash functions h 2 H for which
h.k 1 / D h.k 2 / is at most jH j =m. In other words, with a hash function randomly
chosen from H , the chance of a collision between distinct keys k 1 and k 2 is no
more than the chance 1=m of a collision if h.k 1 / and h.k 2 / were randomly and
independently chosen from the set f0; 1; : : : ;m  1g.

Independent uniform hashing is the same as picking a hash function uniformly at
random from a family of m n hash functions, each member of that family mapping
the n keys to the m hash values in a different way.

Every independent uniform random family of hash function is universal, but the
converse need not be true: consider the case where U D f0; 1; : : : ;m  1g and the
only hash function in the family is the identity function. The probability that two
distinct keys collide is zero, even though each key is hashes to a ûxed value.

11.3 Hash functions 287

The following corollary to Theorem 11.2 on page 279 says that universal hash-
ing provides the desired payoff: it becomes impossible for an adversary to pick a
sequence of operations that forces the worst-case running time.

Corollary 11.3
Using universal hashing and collision resolution by chaining in an initially empty
table with m slots, it takes ‚.s/ expected time to handle any sequence of s I NSERT,
SEARCH, and DELETE operations containing n D O.m/ I NSERT operations.

Proof The I NSERT and DELETE operations take constant time. Since the num-
ber n of insertions is O.m/, we have that ˛ D O.1/. Furthermore, the expected
time for each SEARCH operation is O.1/, which can be seen by examining the
proof of Theorem 11.2. That analysis depends only on collision probabilities,
which are 1=m for any pair k 1 ; k 2 of keys by the choice of an independent uniform
hash function in that theorem. Using a universal family of hash functions here
instead of using independent uniform hashing changes the probability of collision
from 1=m to at most 1=m. By linearity of expectation, therefore, the expected time
for the entire sequence of s operations is O.s/. Since each operation takes �.1/
time, the ‚.s/ bound follows.

11.3.3 Achievable properties of random hashing

There is a rich literature on the properties a family H of hash functions can have,
and how they relate to the efûciency of hashing. We summarize a few of the most
interesting ones here.

Let H be a family of hash functions, each with domain U and range f0; 1; : : : ;
m  1g, and let h be any hash function that is picked uniformly at random from H .
The probabilities mentioned are probabilities over the picks of h.
 The family H is uniform if for any key k in U and any slot q in the range

f0; 1; : : : ;m  1g, the probability that h.k/ D q is 1=m.
 The family H is universal if for any distinct keys k 1 and k 2 in U , the probability

that h.k 1 / D h.k 2 / is at most 1=m.
 The family H of hash functions is -universal if for any distinct keys k 1 and k 2

in U , the probability that h.k 1 / D h.k 2 / is at most � . Therefore, a universal
family of hash functions is also 1=m-universal. 2

2 In the literature, a .c=m/-universal hash function is sometimes called c-universal or c-approxi-
mately universal. We’ll stick with the notation .c=m/-universal.

288 Chapter 11 Hash Tables

 The family H is d -independent if for any distinct keys k 1 , k 2 , . . . , k d in U
and any slots q 1 , q 2 , . . . , q d , not necessarily distinct, in f0; 1; : : : ;m  1g the
probability that h.k i / D q i for i D 1; 2; : : : ; d is 1=m d .

Universal hash-function families are of particular interest, as they are the sim-
plest type supporting provably efûcient hash-table operations for any input data
set. Many other interesting and desirable properties, such as those noted above, are
also possible and allow for efûcient specialized hash-table operations.

11.3.4 Designing a universal family of hash functions
This section present two ways to design a universal (or � -universal) family of hash
functions: one based on number theory and another based on a randomized variant
of the multiply-shift method presented in Section 11.3.1. The ûrst method is a bit
easier to prove universal, but the second method is newer and faster in practice.

A universal family of hash functions based on number theory

We can design a universal family of hash functions using a little number theory.
You may wish to refer to Chapter 31 if you are unfamiliar with basic concepts in
number theory.

Begin by choosing a prime number p large enough so that every possible key k
lies in the range 0 to p  1, inclusive. We assume here that p has a <reasonable=
length. (See Section 11.3.5 for a discussion of methods for handling long input
keys, such as variable-length strings.) Let Z p denote the set f0; 1; : : : ; p  1g, and
let Z 

p denote the set f1; 2; : : : ; p  1g. Since p is prime, we can solve equations
modulo p with the methods given in Chapter 31. Because the size of the universe
of keys is greater than the number of slots in the hash table (otherwise, just use
direct addressing), we have p > m.
Given any a 2 Z 

p and any b 2 Z p , deûne the hash function h ab as a linear
transformation followed by reductions modulo p and then modulo m:
h ab .k/ D ..ak C b/ mod p/ mod m : (11.3)
For example, with p D 17 and m D 6, we have
h 3;4 .8/ D ..3  8 C 4/ mod 17/ mod 6

D .28 mod 17/ mod 6
D 11 mod 6
D 5 :

Given p and m, the family of all such hash functions is
H pm D

˚
h ab W a 2 Z 

p and b 2 Z p

: (11.4)

11.3 Hash functions 289

Each hash function h ab maps Z p to Z m . This family of hash functions has the nice
property that the size m of the output range (which is the size of the hash table) is
arbitrary4it need not be prime. Since you can choose from among p  1 values
for a and p values for b, the family H pm contains p.p  1/ hash functions.

Theorem 11.4
The family H pm of hash functions deûned by equations (11.3) and (11.4) is uni-
versal.

Proof Consider two distinct keys k 1 and k 2 from Z p , so that k 1 ¤ k 2 . For a given
hash function h ab , let
r 1 D .ak 1 C b/ mod p ;
r 2 D .ak 2 C b/ mod p :
We ûrst note that r 1 ¤ r 2 . Why? Since we have r 1  r 2 D a.k 1  k 2 / .mod p/,
it follows that r 1 ¤ r 2 because p is prime and both a and .k 1  k 2 / are nonzero
modulo p. By Theorem 31.6 on page 908, their product must also be nonzero
modulo p. Therefore, when computing any h ab 2 H pm , distinct inputs k 1 and k 2
map to distinct values r 1 and r 2 modulo p, and there are no collisions yet at the
<mod p level.= Moreover, each of the possible p.p  1/ choices for the pair .a; b/
with a ¤ 0 yields a different resulting pair .r 1 ; r 2 / with r 1 ¤ r 2 , since we can solve
for a and b given r 1 and r 2 :
a D

ã
.r 1  r 2 /..k 1  k 2 / 1 mod p/ ä mod p ;

b D .r 1  ak 1 / mod p ;
where ..k 1  k 2 / 1 mod p/ denotes the unique multiplicative inverse, modulo p,
of k 1  k 2 . For each of the p possible values of r 1 , there are only p  1 possible
values of r 2 that do not equal r 1 , making only p.p  1/ possible pairs .r 1 ; r 2 / with
r 1 ¤ r 2 . Therefore, there is a one-to-one correspondence between pairs .a; b/ with
a ¤ 0 and pairs .r 1 ; r 2 / with r 1 ¤ r 2 . Thus, for any given pair of distinct inputs
k 1 and k 2 , if we pick .a; b/ uniformly at random from Z 

p  Z p , the resulting pair
.r 1 ; r 2 / is equally likely to be any pair of distinct values modulo p.

Therefore, the probability that distinct keys k 1 and k 2 collide is equal to the
probability that r 1 D r 2 .mod m/ when r 1 and r 2 are randomly chosen as distinct
values modulo p. For a given value of r 1 , of the p  1 possible remaining values
for r 2 , the number of values r 2 such that r 2 ¤ r 1 and r 2 D r 1 .mod m/ is at most l p
m

m
 1 හ

p C m  1
m

 1 (by inequality (3.7) on page 64)

D
p  1
m

:

290 Chapter 11 Hash Tables

The probability that r 2 collides with r 1 when reduced modulo m is at most
..p  1/=m/=.p  1/ D 1=m, since r 2 is equally likely to be any of the p  1
values in Z p that are different from r 1 , but at most .p  1/=m of those values are
equivalent to r 1 modulo m.

Therefore, for any pair of distinct values k 1 ; k 2 2 Z p ,
Pr fh ab .k 1 / D h ab .k 2 /g හ 1=m ;

so that H pm is indeed universal.

A 2=m-universal family of hash functions based on the multiply-shift method

We recommend that in practice you use the following hash-function family based
on the multiply-shift method. It is exceptionally efûcient and (although we omit
the proof) provably 2=m-universal. Deûne H to be the family of multiply-shift
hash functions with odd constants a:
H D fh a W a is odd, 1 හ a < m, and h a is deûned by equation (11.2)g : (11.5)

Theorem 11.5
The family of hash functions H given by equation (11.5) is 2=m-universal.

That is, the probability that any two distinct keys collide is at most 2=m. In
many practical situations, the speed of computing the hash function more than
compensates for the higher upper bound on the probability that two distinct keys
collide when compared with a universal hash function.

11.3.5 Hashing long inputs such as vectors or strings
Sometimes hash function inputs are so long that they cannot be easily encoded
modulo a reasonably sized prime number p or encoded within a single word of,
say, 64 bits. As an example, consider the class of vectors, such as vectors of 8-bit
bytes (which is how strings in many programming languages are stored). A vector
might have an arbitrary nonnegative length, in which case the length of the input
to the hash function may vary from input to input.

Number-theoretic approaches
One way to design good hash functions for variable-length inputs is to extend the
ideas used in Section 11.3.4 to design universal hash functions. Exercise 11.3-6
explores one such approach.

11.3 Hash functions 291

Cryptographic hashing

Another way to design a good hash function for variable-length inputs is to use a
hash function designed for cryptographic applications. Cryptographic hash func-
tions are complex pseudorandom functions, designed for applications requiring
properties beyond those needed here, but are robust, widely implemented, and us-
able as hash functions for hash tables.

A cryptographic hash function takes as input an arbitrary byte string and returns
a ûxed-length output. For example, the NIST standard deterministic cryptographic
hash function SHA-256 [346] produces a 256-bit (32-byte) output for any input.

Some chip manufacturers include instructions in their CPU architectures to pro-
vide fast implementations of some cryptographic functions. Of particular inter-
est are instructions that efûciently implement rounds of the Advanced Encryption
Standard (AES), the <AES-NI= instructions. These instructions execute in a few
tens of nanoseconds, which is generally fast enough for use with hash tables. A
message authentication code such as CBC-MAC based on AES and the use of the
AES-NI instructions could be a useful and efûcient hash function. We don’t pursue
the potential use of specialized instruction sets further here.

Cryptographic hash functions are useful because they provide a way of imple-
menting an approximate version of a random oracle. As noted earlier, a random
oracle is equivalent to an independent uniform hash function family. From a the-
oretical point of view, a random oracle is an unachievable ideal: a deterministic
function that provides a randomly selected output for each input. Because it is de-
terministic, it provides the same output if queried again for the same input. From
a practical point of view, constructions of hash function families based on crypto-
graphic hash functions are sensible substitutes for random oracles.

There are many ways to use a cryptographic hash function as a hash function.
For example, we could deûne
h.k/ D SHA-256 .k/ mod m :
To deûne a family of such hash functions one may prepend a <salt= string a to the
input before hashing it, as in
h a .k/ D SHA-256 .a k k/ mod m ;
where a k k denotes the string formed by concatenating the strings a and k. The lit-
erature on message authentication codes (MACs) provides additional approaches.
Cryptographic approaches to hash-function design are becoming more practi-

cal as computers arrange their memories in hierarchies of differing capacities and
speeds. Section 11.5 discusses one hash-function design based on the RC6 encryp-
tion method.

292 Chapter 11 Hash Tables

Exercises
11.3-1
You wish to search a linked list of length n, where each element contains a key
k along with a hash value h.k/. Each key is a long character string. How might
you take advantage of the hash values when searching the list for an element with
a given key?
11.3-2
You hash a string of r characters into m slots by treating it as a radix-128 number
and then using the division method. You can represent the number m as a 32-bit
computer word, but the string of r characters, treated as a radix-128 number, takes
many words. How can you apply the division method to compute the hash value of
the character string without using more than a constant number of words of storage
outside the string itself?
11.3-3
Consider a version of the division method in which h.k/ D k mod m, where
m D 2 p  1 and k is a character string interpreted in radix 2 p . Show that if string x
can be converted to string y by permuting its characters, then x and y hash to the
same value. Give an example of an application in which this property would be
undesirable in a hash function.
11.3-4
Consider a hash table of size m D 1000 and a corresponding hash function h.k/ D
bm.kA mod 1/c for A D .

p
5  1/=2. Compute the locations to which the keys

61, 62, 63, 64, and 65 are mapped.
? 11.3-5

Show that any � -universal family H of hash functions from a ûnite set U to a ûnite
set Q has �  1= jQj  1= jU j.

? 11.3-6
Let U be the set of d -tuples of values drawn from Z p , and let Q D Z p , where p
is prime. Deûne the hash function h b W U ! Q for b 2 Z p on an input d -tuple
ha 0 ; a 1 ; : : : ; a d 1 i from U as

h b .ha 0 ; a 1 ; : : : ; a d 1 i/ D


d 1 X

j D0

a j b j

!

mod p ;

and let H D fh b W b 2 Z p g. Argue that H is � -universal for � D .d  1/=p. (Hint:
See Exercise 31.4-4.)

11.4 Open addressing 293

11.4 Open addressing

This section describes open addressing, a method for collision resolution that, un-
like chaining, does not make use of storage outside of the hash table itself. In open
addressing, all elements occupy the hash table itself. That is, each table entry con-
tains either an element of the dynamic set or NIL. No lists or elements are stored
outside the table, unlike in chaining. Thus, in open addressing, the hash table can
<ûll up= so that no further insertions can be made. One consequence is that the
load factor ˛ can never exceed 1.

Collisions are handled as follows: when a new element is to be inserted into the
table, it is placed in its <ûrst-choice= location if possible. If that location is already
occupied, the new element is placed in its <second-choice= location. The process
continues until an empty slot is found in which to place the new element. Different
elements have different preference orders for the locations.

To search for an element, systematically examine the preferred table slots for
that element, in order of decreasing preference, until either you ûnd the desired
element or you ûnd an empty slot and thus verify that the element is not in the
table.
Of course, you could use chaining and store the linked lists inside the hash table,

in the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of
open addressing is that it avoids pointers altogether. Instead of following pointers,
you compute the sequence of slots to be examined. The memory freed by not
storing pointers provides the hash table with a larger number of slots in the same
amount of memory, potentially yielding fewer collisions and faster retrieval.

To perform insertion using open addressing, successively examine, or probe, the
hash table until you ûnd an empty slot in which to put the key. Instead of being
ûxed in the order 0; 1; : : : ;m  1 (which implies a ‚.n/ search time), the sequence
of positions probed depends upon the key being inserted. To determine which slots
to probe, the hash function includes the probe number (starting from 0) as a second
input. Thus, the hash function becomes
h W U  f0; 1; : : : ;m  1g ! f0; 1; : : : ;m  1g :

Open addressing requires that for every key k, the probe sequence hh.k;0/;h.k; 1/;
: : : ; h.k; m  1/i be a permutation of h0; 1; : : : ; m  1i, so that every hash-table
position is eventually considered as a slot for a new key as the table ûlls up. The
HASH-I NSERT procedure on the following page assumes that the elements in the
hash table T are keys with no satellite information: the key k is identical to the
element containing key k. Each slot contains either a key or NIL (if the slot is
empty). The HASH-I NSERT procedure takes as input a hash table T and a key k

294 Chapter 11 Hash Tables

that is assumed to be not already present in the hash table. It either returns the slot
number where it stores key k or üags an error because the hash table is already full.

HASH-I NSERT .T; k/
1 i D 0
2 repeat
3 q D h.k; i/
4 if T Œq� == NIL
5 T Œq� D k
6 return q
7 else i D i C 1
8 until i = = m
9 error <hash table overüow=

HASH-SEARCH.T; k/
1 i D 0
2 repeat
3 q D h.k; i/
4 if T Œq� == k
5 return q
6 i D i C 1
7 until T Œq� = = NIL or i == m
8 return NIL

The algorithm for searching for key k probes the same sequence of slots that the
insertion algorithm examined when key k was inserted. Therefore, the search can
terminate (unsuccessfully) when it ûnds an empty slot, since k would have been
inserted there and not later in its probe sequence. The procedure HASH-SEARCH
takes as input a hash table T and a key k, returning q if it ûnds that slot q contains
key k, or NIL if key k is not present in table T .
Deletion from an open-address hash table is tricky. When you delete a key from

slot q, it would be a mistake to mark that slot as empty by simply storing NIL in
it. If you did, you might be unable to retrieve any key k for which slot q was
probed and found occupied when k was inserted. One way to solve this problem
is by marking the slot, storing in it the special value DELETED instead of NIL. The
HASH-I NSERT procedure then has to treat such a slot as empty so that it can insert
a new key there. The HASH-SEARCH procedure passes over DELETED values
while searching, since slots containing DELETED were ûlled when the key being
searched for was inserted. Using the special value DELETED, however, means that
search times no longer depend on the load factor ˛, and for this reason chaining is

11.4 Open addressing 295

frequently selected as a collision resolution technique when keys must be deleted.
There is a simple special case of open addressing, linear probing, that avoids the
need to mark slots with DELETED. Section 11.5.1 shows how to delete from a hash
table when using linear probing.

In our analysis, we assume independent uniform permutation hashing (also
confusingly known as uniform hashing in the literature): the probe sequence of
each key is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m  1i.
Independent uniform permutation hashing generalizes the notion of independent
uniform hashing deûned earlier to a hash function that produces not just a single
slot number, but a whole probe sequence. True independent uniform permutation
hashing is difûcult to implement, however, and in practice suitable approximations
(such as double hashing, deûned below) are used.
We’ll examine both double hashing and its special case, linear probing. These

techniques guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k; m  1/i is a permutation
of h0; 1; : : : ; m  1i for each key k. (Recall that the second parameter to the hash
function h is the probe number.) Neither double hashing nor linear probing meets
the assumption of independent uniform permutation hashing, however. Double
hashing cannot generate more than m 2 different probe sequences (instead of the
mŠ that independent uniform permutation hashing requires). Nonetheless, double
hashing has a large number of possible probe sequences and, as you might expect,
seems to give good results. Linear probing is even more restricted, capable of
generating only m different probe sequences.

Double hashing

Double hashing offers one of the best methods available for open addressing be-
cause the permutations produced have many of the characteristics of randomly
chosen permutations. Double hashing uses a hash function of the form
h.k; i/ D .h 1 .k/ C ih 2 .k// mod m ;
where both h 1 and h 2 are auxiliary hash functions. The initial probe goes to posi-
tion T Œh 1 .k/�, and successive probe positions are offset from previous positions by
the amount h 2 .k/, modulo m. Thus, the probe sequence here depends in two ways
upon the key k, since the initial probe position h 1 .k/, the step size h 2 .k/, or both,
may vary. Figure 11.5 gives an example of insertion by double hashing.

In order for the entire hash table to be searched, the value h 2 .k/ must be rel-
atively prime to the hash-table size m. (See Exercise 11.4-5.) A convenient way
to ensure this condition is to let m be an exact power of 2 and to design h 2 so
that it always produces an odd number. Another way is to let m be prime and to
design h 2 so that it always returns a positive integer less than m. For example, you

296 Chapter 11 Hash Tables

0
1
2
3
4
5
6
7
8
9
10
11
12

79

69
98

72

14

50

Figure 11.5 Insertion by double hashing. The hash table has size 13 with h 1 .k/ D k mod 13 and
h 2 .k/ D 1 C .k mod 11/. Since 14 D 1 .mod 13/ and 14 D 3 .mod 11/, the key 14 goes into
empty slot 9, after slots 1 and 5 are examined and found to be occupied.

could choose m prime and let
h 1 .k/ D k mod m ;
h 2 .k/ D 1 C .k mod m 0 / ;

where m 0 is chosen to be slightly less than m (say, m  1). For example, if
k D 123456, m D 701, and m 0 D 700, then h 1 .k/ D 80 and h 2 .k/ D 257, so
that the ûrst probe goes to position 80, and successive probes examine every 257th
slot (modulo m) until the key has been found or every slot has been examined.

Although values of m other than primes or exact powers of 2 can in principle
be used with double hashing, in practice it becomes more difûcult to efûciently
generate h 2 .k/ (other than choosing h 2 .k/ D 1, which gives linear probing) in a
way that ensures that it is relatively prime to m, in part because the relative density
�.m/=m of such numbers for general m may be small (see equation (31.25) on
page 921).

When m is prime or an exact power of 2, double hashing produces ‚.m 2 / probe
sequences, since each possible .h 1 .k/; h 2 .k// pair yields a distinct probe sequence.
As a result, for such values of m, double hashing appears to perform close to the
<ideal= scheme of independent uniform permutation hashing.

11.4 Open addressing 297

Linear probing

Linear probing, a special case of double hashing, is the simplest open-addressing
approach to resolving collisions. As with double hashing, an auxiliary hash func-
tion h 1 determines the ûrst probe position h 1 .k/ for inserting an element. If slot
T Œh 1 .k/� is already occupied, probe the next position T Œh 1 .k/ C 1�. Keep going as
necessary, on up to slot T Œm  1�, and then wrap around to slots T Œ0�, T Œ1�, and so
on, but never going past slot T Œh 1 .k/  1�. To view linear probing as a special case
of double hashing, just set the double-hashing step function h 2 to be ûxed at 1:
h 2 .k/ D 1 for all k. That is, the hash function is
h.k; i/ D .h 1 .k/ C i/ mod m (11.6)
for i D 0; 1; : : : ;m  1. The value of h 1 .k/ determines the entire probe sequence,
and so assuming that h 1 .k/ can take on any value in f0; 1; : : : ;m  1g, linear prob-
ing allows only m distinct probe sequences.
We’ll revisit linear probing in Section 11.5.1.

Analysis of open-address hashing

As in our analysis of chaining in Section 11.2, we analyze open addressing in terms
of the load factor ˛ D n=m of the hash table. With open addressing, at most one
element occupies each slot, and thus n හ m, which implies ˛ හ 1. The analysis
below requires ˛ to be strictly less than 1, and so we assume that at least one slot
is empty. Because deleting from an open-address hash table does not really free up
a slot, we assume as well that no deletions occur.

For the hash function, we assume independent uniform permutation hashing. In
this idealized scheme, the probe sequence hh.k; 0/; h.k; 1/; : : : ; h.k;m  1/i used
to insert or search for each key k is equally likely to be any permutation of h0; 1;
: : : ;m  1i. Of course, any given key has a unique ûxed probe sequence associated
with it. What we mean here is that, considering the probability distribution on the
space of keys and the operation of the hash function on the keys, each possible
probe sequence is equally likely.

We now analyze the expected number of probes for hashing with open address-
ing under the assumption of independent uniform permutation hashing, beginning
with the expected number of probes made in an unsuccessful search (assuming, as
stated above, that ˛ < 1).

The bound proven, of 1=.1  ˛/ D 1 C ˛ C ˛ 2 C ˛ 3 C   , has an intuitive in-
terpretation. The ûrst probe always occurs. With probability approximately ˛, the
ûrst probe ûnds an occupied slot, so that a second probe happens. With probability
approximately ˛ 2 , the ûrst two slots are occupied so that a third probe ensues, and
so on.

298 Chapter 11 Hash Tables

Theorem 11.6
Given an open-address hash table with load factor ˛ D n=m < 1 , the expected
number of probes in an unsuccessful search is at most 1=.1  ˛/, assuming inde-
pendent uniform permutation hashing and no deletions.

Proof In an unsuccessful search, every probe but the last accesses an occupied
slot that does not contain the desired key, and the last slot probed is empty. Let the
random variable X denote the number of probes made in an unsuccessful search,
and deûne the event A i , for i D 1; 2; : : :, as the event that an i th probe occurs
and it is to an occupied slot. Then the event fX  i g is the intersection of events
A 1 \A 2 \  \A i 1 . We bound Pr fX  i g by bounding Pr fA 1 \ A 2 \    \ A i 1 g.
By Exercise C.2-5 on page 1190,
Pr fA 1 \ A 2 \    \ A i 1 g D Pr fA 1 g  Pr fA 2 j A 1 g  Pr fA 3 j A 1 \ A 2 g   

Pr fA i 1 j A 1 \ A 2 \    \ A i 2 g :

Since there are n elements and m slots, Pr fA 1 g D n=m. For j > 1, the probability
that there is a j th probe and it is to an occupied slot, given that the ûrst j  1
probes were to occupied slots, is .n  j C 1/=.m  j C 1/. This probability follows
because the j th probe would be ûnding one of the remaining .n  .j  1// elements
in one of the .m  .j  1// unexamined slots, and by the assumption of independent
uniform permutation hashing, the probability is the ratio of these quantities. Since
n < m implies that .n  j /=.m  j / හ n=m for all j in the range 0 හ j < m, it
follows that for all i in the range 1 හ i හ m, we have

Pr fX  i g D
n
m

 n  1
m  1

 n  2
m  2

   n  i C 2
m  i C 2

හ
 n
m

Í i 1

D ˛ i 1 :

The product in the ûrst line has i  1 factors. When i D 1, the product is 1, the
identity for multiplication, and we get Pr fX  1g D 1, which makes sense, since
there must always be at least 1 probe. If each of the ûrst n probes is to an occupied
slot, then all occupied slots have been probed. Then, the .n C 1/st probe must
be to an empty slot, which gives Pr fX  i g D 0 for i > n C 1. Now, we use
equation (C.28) on page 1193 to bound the expected number of probes:

E ŒX� D
1 X

i D1

Pr fX  i g

D
nC1 X

i D1

Pr fX  i g C
X

i>nC1

Pr fX  i g

11.4 Open addressing 299

හ
1 X

i D1

˛ i 1 C 0

D
1 X

i D0

˛ i

D
1

1  ˛
(by equation (A.7) on page 1142 because 0 හ ˛ < 1) .

If ̨ is a constant, Theorem 11.6 predicts that an unsuccessful search runs in O.1/
time. For example, if the hash table is half full, the average number of probes in an
unsuccessful search is at most 1=.1  :5/ D 2. If it is 90% full, the average number
of probes is at most 1=.1  :9/ D 10.
Theorem 11.6 yields almost immediately how well the HASH-I NSERT procedure

performs.

Corollary 11.7
Inserting an element into an open-address hash table with load factor ˛, where
˛ < 1, requires at most 1=.1  ˛/ probes on average, assuming independent uni-
form permutation hashing and no deletions.

Proof An element is inserted only if there is room in the table, and thus ˛ < 1.
Inserting a key requires an unsuccessful search followed by placing the key into the
ûrst empty slot found. Thus, the expected number of probes is at most 1=.1  ̨ /.

It takes a little more work to compute the expected number of probes for a suc-
cessful search.

Theorem 11.8
Given an open-address hash table with load factor ˛ < 1, the expected number of
probes in a successful search is at most
1
˛

ln 1
1  ˛

;

assuming independent uniform permutation hashing with no deletions and assum-
ing that each key in the table is equally likely to be searched for.

Proof A search for a key k reproduces the same probe sequence as when the
element with key k was inserted. If k was the .i C 1/st key inserted into the
hash table, then the load factor at the time it was inserted was i=m, and so by
Corollary 11.7, the expected number of probes made in a search for k is at most
1=.1  i=m/ D m=.m  i/. Averaging over all n keys in the hash table gives us

300 Chapter 11 Hash Tables

the expected number of probes in a successful search:

1
n

n1 X

i D0

m
m  i

D
m
n

n1 X

i D0

1
m  i

D
1
˛

m X

kDmnC1

1
k

හ
1
˛

Z m

mn

1
x
dx (by inequality (A.19) on page 1150)

D
1
˛
.ln m  ln.m  n//

D
1
˛

ln m
m  n

D
1
˛

ln 1
1  ˛

:

If the hash table is half full, the expected number of probes in a successful search
is less than 1:387. If the hash table is 90% full, the expected number of probes is
less than 2:559. If ˛ D 1, then in an unsuccessful search, all m slots must be
probed. Exercise 11.4-4 asks you to analyze a successful search when ˛ D 1.

Exercises
11.4-1
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of
length m D 11 using open addressing. Illustrate the result of inserting these keys
using linear probing with h.k; i/ D .k C i/ mod m and using double hashing with
h 1 .k/ D k and h 2 .k/ D 1 C .k mod .m  1//.
11.4-2
Write pseudocode for HASH-DELETE that ûlls the deleted key’s slot with the spe-
cial value DELETED, and modify HASH-SEARCH and HASH-I NSERT as needed to
handle DELETED.
11.4-3
Consider an open-address hash table with independent uniform permutation hash-
ing and no deletions. Give upper bounds on the expected number of probes in an
unsuccessful search and on the expected number of probes in a successful search
when the load factor is 3=4 and when it is 7=8.

11.5 Practical considerations 301

11.4-4
Show that the expected number of probes required for a successful search when
˛ D 1 (that is, when n D m), is H m , the mth harmonic number.

? 11.4-5
Show that, with double hashing, if m and h 2 .k/ have greatest common divisor
d  1 for some key k, then an unsuccessful search for key k examines .1=d/th
of the hash table before returning to slot h 1 .k/. Thus, when d D 1, so that m
and h 2 .k/ are relatively prime, the search may examine the entire hash table. (Hint:
See Chapter 31.)

? 11.4-6
Consider an open-address hash table with a load factor ˛. Approximate the nonzero
value ˛ for which the expected number of probes in an unsuccessful search equals
twice the expected number of probes in a successful search. Use the upper bounds
given by Theorems 11.6 and 11.8 for these expected numbers of probes.

11.5 Practical considerations

Efûcient hash table algorithms are not only of theoretical interest, but also of im-
mense practical importance. Constant factors can matter. For this reason, this
section discusses two aspects of modern CPUs that are not included in the standard
RAM model presented in Section 2.2:
Memory hierarchies: The memory of modern CPUs has a number of levels,

from the fast registers, through one or more levels of cache memory, to the
main-memory level. Each successive level stores more data than the previous
level, but access is slower. As a consequence, a complex computation (such as
a complicated hash function) that works entirely within the fast registers can
take less time than a single read operation from main memory. Furthermore,
cache memory is organized in cache blocks of (say) 64 bytes each, which are
always fetched together from main memory. There is a substantial beneût for
ensuring that memory usage is local: reusing the same cache block is much
more efûcient than fetching a different cache block from main memory.
The standard RAM model measures efûciency of a hash-table operation by
counting the number of hash-table slots probed. In practice, this metric is only
a crude approximation to the truth, since once a cache block is in the cache,
successive probes to that cache block are much faster than probes that must
access main memory.

302 Chapter 11 Hash Tables

Advanced instruction sets: Modern CPUs may have sophisticated instruction
sets that implement advanced primitives useful for encryption or other forms
of cryptography. These instructions may be useful in the design of exception-
ally efûcient hash functions.

Section 11.5.1 discusses linear probing, which becomes the collision-resolution
method of choice in the presence of a memory hierarchy. Section 11.5.2 suggests
how to construct <advanced= hash functions based on cryptographic primitives,
suitable for use on computers with hierarchical memory models.

11.5.1 Linear probing

Linear probing is often disparaged because of its poor performance in the standard
RAM model. But linear probing excels for hierarchical memory models, because
successive probes are usually to the same cache block of memory.

Deletion with linear probing

Another reason why linear probing is often not used in practice is that deletion
seems complicated or impossible without using the special DELETED value. Yet
we’ll now see that deletion from a hash table based on linear probing is not all
that difûcult, even without the DELETED marker. The deletion procedure works
for linear probing, but not for open-address probing in general, because with lin-
ear probing keys all follow the same simple cyclic probing sequence (albeit with
different starting points).

The deletion procedure relies on an <inverse= function to the linear-probing hash
function h.k; i/ D .h 1 .k/ C i/ mod m, which maps a key k and a probe number i
to a slot number in the hash table. The inverse function g maps a key k and a slot
number q, where 0 හ q < m, to the probe number that reaches slot q:
g.k; q/ D .q  h 1 .k// mod m :
If h.k; i/ D q, then g.k; q/ D i , and so h.k; g.k; q// D q.

The procedure LINEAR-PROBING-HASH-DELETE on the facing page deletes
the key stored in position q from hash table T . Figure 11.6 shows how it works.
The procedure ûrst deletes the key in position q by setting T Œq� to NIL in line 2. It
then searches for a slot q 0 (if any) that contains a key that should be moved to the
slot q just vacated by key k. Line 9 asks the critical question: does the key k 0 in
slot q 0 need to be moved to the vacated slot q in order to preserve the accessibility
of k 0 ? If g.k 0 ; q/ < g.k 0 ; q 0 /, then during the insertion of k 0 into the table, slot q
was examined but found to be already occupied. But now slot q, where a search
will look for k 0 , is empty. In this case, key k 0 moves to slot q in line 10, and the

11.5 Practical considerations 303

0
1
2
3
4
5
6
7
8
9

82

74
93

18
38

43

(a)

0
1
2
3
4
5
6
7
8
9

82

74
93

(b)

92
92

18
38

Figure 11.6 Deletion in a hash table that uses linear probing. The hash table has size 10 with
h 1 .k/ D k mod 10. (a) The hash table after inserting keys in the order 74, 43, 93, 18, 82, 38, 92.
(b) The hash table after deleting the key 43 from slot 3. Key 93 moves up to slot 3 to keep it
accessible, and then key 92 moves up to slot 5 just vacated by key 93. No other keys need to be
moved.

search continues, to see whether any later key also needs to be moved to the slot q 0
that was just freed up when k 0 moved.

LINEAR-PROBING-HASH-DELETE .T; q/
1 while TRUE
2 T Œq� D NIL // make slot q empty
3 q 0 D q // starting point for search
4 repeat
5 q 0 D .q 0 C 1/ mod m // next slot number with linear probing
6 k 0 D T Œq 0 � // next key to try to move
7 if k 0 = = NIL
8 return // return when an empty slot is found
9 until g.k 0 ; q/ < g.k 0 ; q 0 / // was empty slot q probed before q 0 ?
10 T Œq� D k 0 // move k 0 into slot q
11 q D q 0 // free up slot q 0

Analysis of linear probing

Linear probing is popular to implement, but it exhibits a phenomenon known as
primary clustering. Long runs of occupied slots build up, increasing the average

304 Chapter 11 Hash Tables

search time. Clusters arise because an empty slot preceded by i full slots gets ûlled
next with probability .i C 1/=m. Long runs of occupied slots tend to get longer,
and the average search time increases.

In the standard RAM model, primary clustering is a problem, and general dou-
ble hashing usually performs better than linear probing. By contrast, in a hierar-
chical memory model, primary clustering is a beneûcial property, as elements are
often stored together in the same cache block. Searching proceeds through one
cache block before advancing to search the next cache block. With linear prob-
ing, the running time for a key k of HASH-I NSERT, HASH-SEARCH, or LINEAR-
PROBING-HASH-DELETE is at most proportional to the distance from h 1 .k/ to the
next empty slot.
The following theorem is due to Pagh et al. [351]. A more recent proof is given

by Thorup [438]. We omit the proof here. The need for 5-independence is by no
means obvious; see the cited proofs.

Theorem 11.9
If h 1 is 5-independent and ˛ හ 2=3, then it takes expected constant time to search
for, insert, or delete a key in a hash table using linear probing.
(Indeed, the expected operation time is O.1=� 2 / for ˛ D 1  � .)

? 11.5.2 Hash functions for hierarchical memory models
This section illustrates an approach for designing efûcient hash tables in a modern
computer system having a memory hierarchy.

Because of the memory hierarchy, linear probing is a good choice for resolving
collisions, as probe sequences are sequential and tend to stay within cache blocks.
But linear probing is most efûcient when the hash function is complex (for exam-
ple, 5-independent as in Theorem 11.9). Fortunately, having a memory hierarchy
means that complex hash functions can be implemented efûciently.
As noted in Section 11.3.5, one approach is to use a cryptographic hash func-

tion such as SHA-256. Such functions are complex and sufûciently random for
hash table applications. On machines with specialized instructions, cryptographic
functions can be quite efûcient.

Instead, we present here a simple hash function based only on addition, multi-
plication, and swapping the halves of a word. This function can be implemented
entirely within the fast registers, and on a machine with a memory hierarchy, its
latency is small compared with the time taken to access a random slot of the hash
table. It is related to the RC6 encryption algorithm and can f or practical purposes
be considered a <random oracle.=

11.5 Practical considerations 305

The wee hash function

Let w denote the word size of the machine (e.g., w D 64), assumed to be even,
and let a and b be w-bit unsigned (nonnegative) integers such that a is odd. Let
swap.x/ denote the w-bit result of swapping the two w=2-bit halves of w-bit in-
put x . That is,
swap.x/ D .x o .w=2// C .x n .w=2//

where <o= is <logical right shift= (as in equation (11.2)) and <n is <left shift.=
Deûne
f a .k/ D swap..2k 2 C ak/ mod 2 w / :

Thus, to compute f a .k/, evaluate the quadratic function 2k 2 C ak modulo 2 w and
then swap the left and right halves of the result.

Let r denote a desired number of <rounds= for the computation of the hash func-
tion. We’ll use r D 4, but the hash function is well deûned for any nonnegative r .
Denote by f .r/ a .k/ the result of iterating f a a total of r times (that is, r rounds)
starting with input value k. For any odd a and any r  0, the function f .r/ a , al-
though complicated, is one-to-one (see Exercise 11.5-1). A cryptographer would
view f .r/ a as a simple block cipher operating on w-bit input blocks, with r rounds
and key a.
We ûrst deûne the wee hash function h for short inputs, where by <short= we

means <whose length t is at most w-bits,= so that the input ûts within one computer
word. We would like inputs of different lengths to be hashed differently. The wee
hash function h a;b;t;r .k/ for parameters a, b, and r on t -bit input k is deûned as
h a;b;t;r .k/ D

ã
f .r/ aC2t .k C b/

ä mod m : (11.7)
That is, the hash value for t -bit input k is obtained by applying f .r/ aC2t to k C b, then
taking the ûnal result modulo m. Adding the value b provides hash-dependent
randomization of the input, in a way that ensures that for variable-length inputs the
0-length input does not have a ûxed hash value. Adding the value 2t to a ensures
that the hash function acts differently for inputs of different lengths. (We use 2t
rather than t to ensure that the key a C 2t is odd if a is odd.) We call this hash
function <wee= because it uses a tiny amount of memory4more precisely, it can
be implemented efûciently using only the computer’s fast registers. (This hash
function does not have a name in the literature; it is a variant we developed for this
textbook.)

Speed of the wee hash function

It is surprising how much efûciency can be bought with locality. Experiments (un-
published, by the authors) suggest that evaluating the wee hash function takes less

306 Chapter 11 Hash Tables

time than probing a single randomly chosen slot in a hash table. These experi-
ments were run on a laptop (2019 MacBook Pro) with w D 64 and a D 123. For
large hash tables, evaluating the wee hash function was 2 to 10 times faster than
performing a single probe of the hash table.

The wee hash function for variable-length inputs
Sometimes inputs are long4more than one w-bit word in length4or have variable
length, as discussed in Section 11.3.5. We can extend the wee hash function, de-
ûned above for inputs that are at most single w-bit word in length, to handle long
or variable-length inputs. Here is one method for doing so.

Suppose that an input k has length t (measured in bits). Break k into a sequence
hk 1 ; k 2 ; : : : ; k u i of w-bit words, where u D dt=we, k 1 contains the least-signiûcant
w bits of k, and k u contains the most signiûcant bits. If t is not a multiple of w,
then k u contains fewer than w bits, in which case, pad out the unused high-order
bits of k u with 0-bits. Deûne the function chop to return a sequence of the w-bit
words in k:
chop.k/ D hk 1 ; k 2 ; : : : ; k u i :
The most important property of the chop operation is that it is one-to-one, given t :
for any two t -bit keys k and k 0 , if k ¤ k 0 then chop.k/ ¤ chop.k 0 /, and k can be
derived from chop.k/ and t . The chop operation also has the useful property that a
single-word input key yields a single-word output sequence: chop.k/ D hki.

With the chop function in hand, we specify the wee hash function h a;b;t;r .k/ for
an input k of length t bits as follows:
h a;b;t;r .k/ D WEE.k; a; b; t; r;m/ ;
where the procedure WEE deûned on the facing page iterates through the elements
of the w-bit words returned by chop.k/, applying f r

a to the sum of the current
word k i and the previously computed hash value so far, ûnally returning the result
obtained modulo m. This deûnition for variable-length and long (multiple-word)
inputs is a consistent extension of the deûnition in equation (11.7) for short (single-
word) inputs. For practical use, we recommend that a be a randomly chosen odd
w-bit word, b be a randomly chosen w-bit word, and that r D 4.

Note that the wee hash function is really a hash function family, with individ-
ual hash functions determined by parameters a; b; t; r; and m. The (approximate)
5-independence of the wee hash function family for variable-length inputs can be
argued based on the assumption that the 1-word wee hash function is a random or-
acle and on the security of the cipher-block-chaining message authentication code
(CBC-MAC), as studied by Bellare et al. [42]. The case here is actually simpler
than that studied in the literature, since if two messages have different lengths t
and t 0 , then their <keys= are different: a C 2t ¤ a C 2t 0 . We omit the details.

11.5 Practical considerations 307

WEE.k; a; b; t; r;m/
1 u D dt=we
2 hk 1 ; k 2 ; : : : ; k u i D chop.k/
3 q D b
4 for i D 1 to u
5 q D f .r/ aC2t .k i C q/
6 return q mod m

This deûnition of a cryptographically inspired hash-function family is meant
to be realistic, yet only illustrative, and many variations and improvements are
possible. See the chapter notes for suggestions.

In summary, we see that when the memory system is hierarchical, it becomes
advantageous to use linear probing (a special case of double hashing), since suc-
cessive probes tend to stay in the same cache block. Furthermore, hash functions
that can be implemented using only the computer’s fast registers are exceptionally
efûcient, so they can be quite complex and even cryptographically inspired, pro-
viding the high degree of independence needed for linear probing to work most
efûciently.

Exercises
? 11.5-1

Complete the argument that for any odd positive integer a and any integer r  0,
the function f .r/ a is one-to-one. Use a proof by contradiction and make use of the
fact that the function f a works modulo 2 w .

? 11.5-2
Argue that a random oracle is 5-independent.

? 11.5-3
Consider what happens to the value f .r/ a .k/ as we üip a single bit k i of the input
value k, for various values of r . Let k D

P w1
i D0 k i 2 i and g a .k/ D

P w1
j D0 b j 2 j

deûne the bit values k i in the input (with k 0 the least-signiûcant bit) and the bit
values b j in g a .k/ D .2k 2 C ak/ mod 2 w (where g a .k/ is the value that, when
its halves are swapped, becomes f a .k/). Suppose that üipping a single bit k i of
the input k may cause any bit b j of g a .k/ to üip, for j  i . What is the least
value of r for which üipping the value of any single bit k i may cause any bit of the
output f .r/ a .k/ to üip? Explain.

308 Chapter 11 Hash Tables

Problems

11-1 Longest-probe bound for hashing
Suppose you are using an open-addressed hash table of size m to store n හ m=2
items.
a. Assuming independent uniform permutation hashing, show that for i D
1; 2; : : : ; n, the probability is at most 2 p that the i th insertion requires strictly
more than p probes.

b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n 2 / that the i th insertion
requires more than 2 lg n probes.

Let the random variable X i denote the number of probes required by the i th inser-
tion. You have shown in part (b) that Pr fX i > 2 lg ng D O.1=n 2 /. Let the random
variable X D max fX i W 1 හ i හ ng denote the maximum number of probes re-
quired by any of the n insertions.
c. Show that Pr fX > 2 lg ng D O.1=n/.

d. Show that the expected length E ŒX� of the longest probe sequence is O.lg n/.

11-2 Searching a static set
You are asked to implement a searchable set of n elements in which the keys are
numbers. The set is static (no I NSERT or DELETE operations), and the only opera-
tion required is SEARCH. You are given an arbitrary amount of time to preprocess
the n elements so that SEARCH operations run quickly.
a. Show how to implement SEARCH in O.lg n/ worst-case time using no extra

storage beyond what is needed to store the elements of the set themselves.

b. Consider implementing the set by open-address hashing on m slots, and assume
independent uniform permutation hashing. What is the minimum amount of ex-
tra storage m  n required to make the average performance of an unsuccessful
SEARCH operation be at least as good as the bound in part (a)? Your answer
should be an asymptotic bound on m  n in terms of n.

11-3 Slot-size bound for chaining
Given a hash table with n slots, with collisions resolved by chaining, suppose that
n keys are inserted into the table. Each key is equally likely to be hashed to each
slot. Let M be the maximum number of keys in any slot after all the keys have

Problems for Chapter 11 309

been inserted. Your mission is to prove an O.lg n= lg lg n/ upper bound on E ŒM �,
the expected value of M .
a. Argue that the probability Q k that exactly k keys hash to a particular slot is

given by

Q k D
Î
1
n

Ï k Î
1 

1
n

Ï nk

n
k

!

:

b. Let P k be the probability that M D k, that is, the probability that the slot
containing the most keys contains k keys. Show that P k හ nQ k .

c. Show that Q k < e k =k k . Hint: Use Stirling’s approximation, equation (3.25)
on page 67.

d. Show that there exists a constant c > 1 such that Q k 0 < 1=n 3 for k 0 D
c lg n= lg lg n. Conclude that P k < 1=n 2 for k  k 0 D c lg n= lg lg n.

e. Argue that

E ŒM � හ Pr
ï
M >

c lg n
lg lg n

ð
 n C Pr

ï
M හ

c lg n
lg lg n

ð
 c lg n

lg lg n
:

Conclude that E ŒM � D O.lg n= lg lg n/.

11-4 Hashing and authentication
Let H be a family of hash functions in which each hash function h 2 H maps the
universe U of keys to f0; 1; : : : ;m  1g.
a. Show that if the family H of hash functions is 2-independent, then it is univer-

sal.

b. Suppose that the universe U is the set of n-tuples of values drawn from
Z p D f0; 1; : : : ; p  1g, where p is prime. Consider an element x D
hx 0 ; x 1 ; : : : ; x n1 i 2 U . For any n-tuple a D ha 0 ; a 1 ; : : : ; a n1 i 2 U , de-
ûne the hash function h a by

h a .x/ D


n1 X

j D0

a j x j

!

mod p :

Let H D fh a W a 2 U g. Show that H is universal, but not 2-independent.
(Hint: Find a key for which all hash functions in H produce the same value.)

310 Chapter 11 Hash Tables

c. Suppose that we modify H slightly from part (b): for any a 2 U and for any
b 2 Z p , deûne

h 0 ab .x/ D


n1 X

j D0

a j x j C b

!

mod p

and H 0 D fh 0
ab W a 2 U and b 2 Z p g. Argue that H 0 is 2-independent. (Hint:

Consider ûxed n-tuples x 2 U and y 2 U , with x i ¤ y i for some i . What
happens to h 0

ab .x/ and h 0
ab .y/ as a i and b range over Z p ?)

d. Alice and Bob secretly agree on a hash function h from a 2-independent fam-
ily H of hash functions. Each h 2 H maps from a universe of keys U to Z p ,
where p is prime. Later, Alice sends a message m to Bob over the internet,
where m 2 U . She authenticates this message to Bob by also sending an au-
thentication tag t D h.m/, and Bob checks that the pair .m; t/ he receives
indeed satisûes t D h.m/. Suppose that an adversary intercepts .m; t/ en route
and tries to fool Bob by replacing the pair .m; t/ with a different pair .m 0 ; t 0 /.
Argue that the probability that the adversary succeeds in fooling Bob into ac-
cepting .m 0 ; t 0 / is at most 1=p, no matter how much computing power the ad-
versary has, even if the adversary knows the family H of hash functions used.

Chapter notes

The books by Knuth [261] and Gonnet and Baeza-Yates [193] are excellent ref-
erences for the analysis of hashing algorithms. Knuth credits H. P. Luhn (1953)
for inventing hash tables, along with the chaining method for resolving collisions.
At about the same time, G. M. Amdahl originated the idea of open addressing.
The notion of a random oracle was introduced by Bellare et al. [43]. Carter and
Wegman [80] introduced the notion of universal families of hash functions in 1979.
Dietzfelbinger et al. [113] invented the multiply-shift hash function and gave a

proof of Theorem 11.5. Thorup [437] provides extensions and additional analysis.
Thorup [438] gives a simple proof that linear probing with 5-independent hashing
takes constant expected time per operation. Thorup also describes the method for
deletion in a hash table using linear probing.
Fredman, Koml´ os, and Szemer´ edi [154] developed a perfect hashing scheme

for static sets4<perfect= because all collisions are avoided. An extension of their
method to dynamic sets, handling insertions and deletions in amortized expected
time O.1/, has been given by Dietzfelbinger et al. [114].
The wee hash function is based on the RC6 encryption algorithm [379]. Leiser-

son et al. [292] propose an <RC6MIX= function that is essentially the same as the

Notes for Chapter 11 311

wee hash function. They give experimental evidence that it has good randomness,
and they also give a <DOTMIX= function for dealing with variable-length inputs.
Bellare et al. [42] provide an analysis of the security of the cipher-block-chaining
message authentication code. This analysis implies that the wee hash function has
the desired pseudorandomness properties.

