
11 Hash Tables 

Many applications require a dynamic set that supports only the dictionary opera- 
tions I NSERT, SEARCH, and DELETE. For example, a compiler that translates a 
programming language maintains a symbol table, in which the keys of elements 
are arbitrary character strings corresponding to identiûers in the language. A hash 
table is an effective data structure for implementing dictionaries. Although search- 
ing for an element in a hash table can take as long as searching for an element in a 
linked list4‚.n/ time in the worst case4in practice, hashing performs extremely 
well. Under reasonable assumptions, the average time to search for an element in 
a hash table is O.1/. Indeed, the built-in dictionaries of Python are implemented 
with hash tables. 

A hash table generalizes the simpler notion of an ordinary array. Directly ad- 
dressing into an ordinary array takes advantage of the O.1/ access time for any 
array element. Section 11.1 discusses direct addressing in more detail. To use di- 
rect addressing, you must be able to allocate an array that contains a position for 
every possible key. 

When the number of keys actually stored is small relative to the total number 
of possible keys, hash tables become an effective alternative to directly address- 
ing an array, since a hash table typically uses an array of size proportional to the 
number of keys actually stored. Instead of using the key as an array index directly, 
we compute the array index from the key. Section 11.2 presents the main ideas, 
focusing on <chaining= as a way to handle <collisions,= in which more than one 
key maps to the same array index. Section 11.3 describes how to compute array 
indices from keys using hash functions. We present and analyze several variations 
on the basic theme. Section 11.4 looks at <open addressing,= which is another way 
to deal with collisions. The bottom line is that hashing is an extremely effective 
and practical technique: the basic dictionary operations require only O.1/ time on 
the average. Section 11.5 discusses the hierarchical memory systems of modern 
computer systems have and illustrates how to design hash tables that work well in 
such systems. 
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11.1 Direct-address tables 

Direct addressing is a simple technique that works well when the universe U of 
keys is reasonably small. Suppose that an application needs a dynamic set in which 
each element has a distinct key drawn from the universe U D f0; 1; : : : ;m  1g, 
where m is not too large. 

To represent the dynamic set, you can use an array, or direct-address table, de- 
noted by T Œ0 W m  1�, in which each position, or slot, corresponds to a key in the 
universe U . Figure 11.1 illustrates this approach. Slot k points to an element in the 
set with key k. If the set contains no element with key k, then T Œk� D NIL. 

The dictionary operations DIRECT-ADDRESS-SEARCH, DIRECT-ADDRESS- 
I NSERT, and DIRECT-ADDRESS-DELETE on the following page are trivial to im- 
plement. Each takes only O.1/ time. 
For some applications, the direct-address table itself can hold the elements in 

the dynamic set. That is, rather than storing an element’s key and satellite data in 
an object external to the direct-address table, with a pointer from a slot in the table 
to the object, save space by storing the object directly in the slot. To indicate an 
empty slot, use a special key. Then again, why store the key of the object at all? 
The index of the object is its key! Of course, then you’d need some way to tell 
whether slots are empty. 

T 

U 
(universe of keys) 

K 
(actual 
keys) 

2 
3 

5 8 

1 

9 4 
0 

7 
6 2 

3 

5 

8 

key satellite data 
2 

0 
1 

3 

4 

5 

6 

7 

8 

9 

Figure 11.1 How to implement a dynamic set by a direct-address table T . Each key in the universe 
U D f0; 1; : : : ; 9g corresponds to an index into the table. The set K D f2; 3; 5; 8g of actual keys 
determines the slots in the table that contain pointers to elements. The other slots, in blue, contain 
NIL. 
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DIRECT-ADDRESS-SEARCH .T; k/ 
1 return T Œk� 

DIRECT-ADDRESS-I NSERT .T; x/ 
1 T Œx: key� D x 

DIRECT-ADDRESS-DELETE .T; x/ 
1 T Œx: key� D NIL 

Exercises 
11.1-1 
A dynamic set S is represented by a direct-address table T of length m. Describe 
a procedure that ûnds the maximum element of S . What is the worst-case perfor- 
mance of your procedure? 
11.1-2 
A bit vector is simply an array of bits (each either 0 or 1). A bit vector of length m 
takes much less space than an array of m pointers. Describe how to use a bit vector 
to represent a dynamic set of distinct elements drawn from the set f0; 1; : : : ;m  1g 
and with no satellite data. Dictionary operations should run in O.1/ time. 
11.1-3 
Suggest how to implement a direct-address table in which the keys of stored el- 
ements do not need to be distinct and the elements can have satellite data. All 
three dictionary operations (I NSERT, DELETE, and SEARCH) should run in O.1/ 
time. (Don’t forget that DELETE takes as an argument a pointer to an object to be 
deleted, not a key.) 

? 11.1-4 
Suppose that you want to implement a dictionary by using direct addressing on 
a huge array. That is, if the array size is m and the dictionary contains at most 
n elements at any one time, then m  n. At the start, the array entries may 
contain garbage, and initializing the entire array is impractical because of its size. 
Describe a scheme for implementing a direct-address dictionary on a huge array. 
Each stored object should use O.1/ space; the operations SEARCH, I NSERT, and 
DELETE should take O.1/ time each; and initializing the data structure should take 
O.1/ time. (Hint: Use an additional array, treated somewhat like a stack whose size 
is the number of keys actually stored in the dictionary, to help determine whether 
a given entry in the huge array is valid or not.) 
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11.2 Hash tables 

The downside of direct addressing is apparent: if the universe U is large or inûnite, 
storing a table T of size jU j may be impractical, or even impossible, given the 
memory available on a typical computer. Furthermore, the set K of keys actually 
stored may be so small relative to U that most of the space allocated for T would 
be wasted. 

When the set K of keys stored in a dictionary is much smaller than the uni- 
verse U of all possible keys, a hash table requires much less storage than a direct- 
address table. Speciûcally, the storage requirement reduces to ‚.jKj/ while main- 
taining the beneût that searching for an element in the hash table still requires only 
O.1/ time. The catch is that this bound is for the average-case time, 1 whereas for 
direct addressing it holds for the worst-case time. 

With direct addressing, an element with key k is stored in slot k, but with hash- 
ing, we use a hash function h to compute the slot number from the key k, so that 
the element goes into slot h.k/. The hash function h maps the universe U of keys 
into the slots of a hash table T Œ0 W m  1�: 
h W U ! f0; 1; : : : ;m  1g ; 

where the size m of the hash table is typically much less than jU j. We say that 
an element with key k hashes to slot h.k/, and we also say that h.k/ is the hash 
value of key k. Figure 11.2 illustrates the basic idea. The hash function reduces 
the range of array indices and hence the size of the array. Instead of a size of jU j, 
the array can have size m. An example of a simple, but not particularly good, hash 
function is h.k/ D k mod m. 

There is one hitch, namely that two keys may hash to the same slot. We call this 
situation a collision. Fortunately, there are effective techniques for resolving the 
conüict created by collisions. 
Of course, the ideal solution is to avoid collisions altogether. We might try to 

achieve this goal by choosing a suitable hash function h. One idea is to make h ap- 
pear to be <random,= thus avoiding collisions or at least minimizing their number. 
The very term <to hash,= evoking images of random mixing and chopping, cap- 
tures the spirit of this approach. (Of course, a hash function h must be determin- 
istic in that a given input k must always produce the same output h.k/.) Because 
jU j > m, however, there must be at least two keys that have the same hash value, 

1 The deûnition of <average-case= requires care4are we assuming an input distribution over the 
keys, or are we randomizing the choice of hash function itself? We’ll consider both approaches, but 
with an emphasis on the use of a randomly chosen hash function. 
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Figure 11.2 Using a hash function h to map keys to hash-table slots. Because keys k 2 and k 5 map 
to the same slot, they collide. 

and avoiding collisions altogether is impossible. Thus, although a well-designed, 
<random=-looking hash function can reduce the number of collisions, we still need 
a method for resolving the collisions that do occur. 
The remainder of this section ûrst presents a deûnition of <independent uniform 

hashing,= which captures the simplest notion of what it means for a hash function 
to be <random.= It then presents and analyzes the simplest collision resolution tech- 
nique, called chaining. Section 11.4 introduces an alternative method for resolving 
collisions, called open addressing. 

Independent uniform hashing 
An <ideal= hashing function h would have, for each possible input k in the do- 
main U , an output h.k/ that is an element randomly and independently chosen 
uniformly from the range f0; 1; : : : ;m  1g. Once a value h.k/ is randomly cho- 
sen, each subsequent call to h with the same input k yields the same output h.k/. 

We call such an ideal hash function an independent uniform hash function. 
Such a function is also often called a random oracle [43]. When hash tables are 
implemented with an independent uniform hash function, we say we are using 
independent uniform hashing. 

Independent uniform hashing is an ideal theoretical abstraction, but it is not 
something that can reasonably be implemented in practice. Nonetheless, we’ll 
analyze the efûciency of hashing under the assumption of independent uniform 
hashing and then present ways of achieving useful practical approximations to this 
ideal. 
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Figure 11.3 Collision resolution by chaining. Each nonempty hash-table slot T Œj � points to a 
linked list of all the keys whose hash value is j . For example, h.k 1 / D h.k 4 / and h.k 5 / D h.k 2 / D 
h.k 7 /. The list can be either singly or doubly linked. We show it as doubly linked because deletion 
may be faster that way when the deletion procedure knows which list element (not just which key) is 
to be deleted. 

Collision resolution by chaining 
At a high level, you can think of hashing with chaining as a nonrecursive form 
of divide-and-conquer: the input set of n elements is divided randomly into m 
subsets, each of approximate size n=m. A hash function determines which subset 
an element belongs to. Each subset is managed independently as a list. 
Figure 11.3 shows the idea behind chaining: each nonempty slot points to a 

linked list, and all the elements that hash to the same slot go into that slot’s linked 
list. Slot j contains a pointer to the head of the list of all stored elements with hash 
value j . If there are no such elements, then slot j contains NIL. 

When collisions are resolved by chaining, the dictionary operations are straight- 
forward to implement. They appear on the next page and use the linked-list pro- 
cedures from Section 10.2. The worst-case running time for insertion is O.1/. 
The insertion procedure is fast in part because it assumes that the element x be- 
ing inserted is not already present in the table. To enforce this assumption, you 
can search (at additional cost) for an element whose key is x: key before inserting. 
For searching, the worst-case running time is proportional to the length of the list. 
(We’ll analyze this operation more closely below.) Deletion takes O.1/ time if the 
lists are doubly linked, as in Figure 11.3. (Since CHAINED-HASH-DELETE takes 
as input an element x and not its key k, no search is needed. If the hash table 
supports deletion, then its linked lists should be doubly linked in order to delete an 
item quickly. If the lists were only singly linked, then by Exercise 10.2-1, deletion 
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CHAINED-HASH-I NSERT .T; x/ 
1 LIST-PREPEND .T Œh.x: key/�; x/ 

CHAINED-HASH-SEARCH .T; k/ 
1 return LIST-SEARCH .T Œh.k/�; k/ 

CHAINED-HASH-DELETE .T; x/ 
1 LIST-DELETE .T Œh.x: key/�; x/ 

could take time proportional to the length of the list. With singly linked lists, both 
deletion and searching would have the same asymptotic running times.) 

Analysis of hashing with chaining 
How well does hashing with chaining perform? In particular, how long does it take 
to search for an element with a given key? 
Given a hash table T with m slots that stores n elements, we deûne the load 

factor ˛ for T as n=m, that is, the average number of elements stored in a chain. 
Our analysis will be in terms of ˛, which can be less than, equal to, or greater 
than 1. 
The worst-case behavior of hashing with chaining is terrible: all n keys hash 

to the same slot, creating a list of length n. The worst-case time for searching is 
thus ‚.n/ plus the time to compute the hash function4no better than using one 
linked list for all the elements. We clearly don’t use hash tables for their worst-case 
performance. 
The average-case performance of hashing depends on how well the hash func- 

tion h distributes the set of keys to be stored among the m slots, on the average 
(meaning with respect to the distribution of keys to be hashed and with respect to 
the choice of hash function, if this choice is randomized). Section 11.3 discusses 
these issues, but for now we assume that any given element is equally likely to 
hash into any of the m slots. That is, the hash function is uniform. We further 
assume that where a given element hashes to is independent of where any other el- 
ements hash to. In other words, we assume that we are using independent uniform 
hashing. 

Because hashes of distinct keys are assumed to be independent, independent uni- 
form hashing is universal: the chance that any two distinct keys k 1 and k 2 collide is 
at most 1=m. Universality is important in our analysis and also in the speciûcation 
of universal families of hash functions, which we’ll see in Section 11.3.2. 

For j D 0; 1; : : : ;m  1, denote the length of the list T Œj � by n j , so that 
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n D n 0 C n 1 C    C n m1 ; (11.1) 
and the expected value of n j is E Œn j � D ˛ D n=m. 

We assume that O.1/ time sufûces to compute the hash value h.k/, so that 
the time required to search for an element with key k depends linearly on the 
length n h.k/ of the list T Œh.k/�. Setting aside the O.1/ time required to compute 
the hash function and to access slot h.k/, we’ll consider the expected number of 
elements examined by the search algorithm, that is, the number of elements in the 
list T Œh.k/� that the algorithm checks to see whether any have a key equal to k. We 
consider two cases. In the ûrst, the search is unsuccessful: no element in the table 
has key k. In the second, the search successfully ûnds an element with key k. 

Theorem 11.1 
In a hash table in which collisions are resolved by chaining, an unsuccessful search 
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform 
hashing. 

Proof Under the assumption of independent uniform hashing, any key k not al- 
ready stored in the table is equally likely to hash to any of the m slots. The expected 
time to search unsuccessfully for a key k is the expected time to search to the end of 
list T Œh.k/�, which has expected length E Œn h.k/ � D ˛. Thus, the expected number 
of elements examined in an unsuccessful search is ˛, and the total time required 
(including the time for computing h.k/) is ‚.1 C ˛/. 

The situation for a successful search is slightly different. An unsuccessful search 
is equally likely to go to any slot of the hash table. A successful search, however, 
cannot go to an empty slot, since it is for an element that is present in one of the 
linked lists. We assume that the element searched for is equally likely to be any 
one of the elements in the table, so the longer the list, the more likely that the 
search is for one of its elements. Even so, the expected search time still turns out 
to be ‚.1 C ˛/. 

Theorem 11.2 
In a hash table in which collisions are resolved by chaining, a successful search 
takes ‚.1 C ˛/ time on average, under the assumption of independent uniform 
hashing. 

Proof We assume that the element being searched for is equally likely to be any 
of the n elements stored in the table. The number of elements examined during 
a successful search for an element x is 1 more than the number of elements that 
appear before x in x ’s list. Because new elements are placed at the front of the list, 
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elements before x in the list were all inserted after x was inserted. Let x i denote 
the i th element inserted into the table, for i D 1; 2; : : : ; n, and let k i D x i : key. 
Our analysis uses indicator random variables extensively. For each slot q in the 

table and for each pair of distinct keys k i and k j , we deûne the indicator random 
variable 
X ij q D I fthe search is for x i , h.k i / D q, and h.k j / D q g : 

That is, X ij q D 1 when keys k i and k j collide at slot q and the search is for 
element x i . Because Pr fthe search is for x i g D 1=n, Pr fh.k i / D qg D 1=m, 
Pr fh.k j / D qg D 1=m, and these events are all independent, we have that 
Pr fX ij q D 1g D 1=nm 2 . Lemma 5.1 on page 130 gives E ŒX ij q � D 1=nm 2 . 
Next, we deûne, for each element x j , the indicator random variable 

Y j D I fx j appears in a list prior to the element being searched forg 

D 
m1 X 

qD0 

j 1 X 

i D1 

X ij q ; 

since at most one of the X ij q equals 1, namely when the element x i being searched 
for belongs to the same list as x j (pointed to by slot q), and i < j (so that x i 
appears after x j in the list). 
Our ûnal random variable is Z, which counts how many elements appear in the 

list prior to the element being searched for: 

Z D 
n X 

j D1 

Y j : 

Because we must count the element being searched for as well as all those pre- 
ceding it in its list, we wish to compute E ŒZ C 1�. Using linearity of expectation 
(equation (C.24) on page 1192), we have 

E ŒZ C 1� D E 
" 

1 C 
n X 

j D1 

Y j 

# 

D 1 C E 
" 

n X 

j D1 

m1 X 

qD0 

j 1 X 

i D1 

X ij q 

# 

D 1 C E 
" 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

X ij q 

# 

D 1 C 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

E ŒX ij q � (by linearity of expectation) 
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D 1 C 
m1 X 

qD0 

n X 

j D1 

j 1 X 

i D1 

1 
nm 2 

D 1 C m  n.n  1/ 
2 

 1 
nm 2 

(by equation (A.2) on page 1141) 

D 1 C 
n  1 
2m 

D 1 C 
n 
2m 

 
1 
2m 

D 1 C 
˛ 
2 

 
˛ 
2n 
: 

Thus, the total time required for a successful search (including the time for com- 
puting the hash function) is ‚.2 C ˛=2  ˛=2n/ D ‚.1 C ˛/. 

What does this analysis mean? If the number of elements in the table is at 
most proportional to the number of hash-table slots, we have n D O.m/ and, 
consequently, ˛ D n=m D O.m/=m D O.1/. Thus, searching takes constant time 
on average. Since insertion takes O.1/ worst-case time and deletion takes O.1/ 
worst-case time when the lists are doubly linked (assuming that the list element to 
be deleted is known, and not just its key), we can support all dictionary operations 
in O.1/ time on average. 

The analysis in the preceding two theorems depends only on two essential prop- 
erties of independent uniform hashing: uniformity (each key is equally likely to 
hash to any one of the m slots), and independence (so any two distinct keys collide 
with probability 1=m). 

Exercises 
11.2-1 
You use a hash function h to hash n distinct keys into an array T of length m. 
Assuming independent uniform hashing, what is the expected number of colli- 
sions? More precisely, what is the expected cardinality of ˚ fk 1 ; k 2 g W k 1 ¤ k 2 

and h.k 1 / D h.k 2 / 
 ? 

11.2-2 
Consider a hash table with 9 slots and the hash function h.k/ D k mod 9. Demon- 
strate what happens upon inserting the keys 5; 28; 19; 15; 20; 33; 12; 17; 10 with 
collisions resolved by chaining. 
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11.2-3 
Professor Marley hypothesizes that he can obtain substantial performance gains by 
modifying the chaining scheme to keep each list in sorted order. How does the pro- 
fessor’s modiûcation affect the running time for successful searches, unsuccessful 
searches, insertions, and deletions? 
11.2-4 
Suggest how to allocate and deallocate storage for elements within the hash table 
itself by creating a <free list=: a linked list of all the unused slots. Assume that 
one slot can store a üag and either one element plus a pointer or two pointers. All 
dictionary and free-list operations should run in O.1/ expected time. Does the free 
list need to be doubly linked, or does a singly linked free list sufûce? 
11.2-5 
You need to store a set of n keys in a hash table of size m. Show that if the keys 
are drawn from a universe U with jU j > .n  1/m, then U has a subset of size n 
consisting of keys that all hash to the same slot, so that the worst-case searching 
time for hashing with chaining is ‚.n/. 
11.2-6 
You have stored n keys in a hash table of size m, with collisions resolved by chain- 
ing, and you know the length of each chain, including the length L of the longest 
chain. Describe a procedure that selects a key uniformly at random from among 
the keys in the hash table and returns it in expected time O.L  .1 C 1=˛//. 

11.3 Hash functions 

For hashing to work well, it needs a good hash function. Along with being efû- 
ciently computable, what properties does a good hash function have? How do you 
design good hash functions? 
This section ûrst attempts to answer these questions based on two ad hoc ap- 

proaches for creating hash functions: hashing by division and hashing by multipli- 
cation. Although these methods work well for some sets of input keys, they are 
limited because they try to provide a single ûxed hash function that works well on 
any data4an approach called static hashing. 
We then see that provably good average-case performance for any data can be 

obtained by designing a suitable family of hash functions and choosing a hash func- 
tion at random from this family at runtime, independent of the data to be hashed. 
The approach we examine is called random hashing. A particular kind of random 
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hashing, universal hashing, works well. As we saw with quicksort in Chapter 7, 
randomization is a powerful algorithmic design tool. 

What makes a good hash function? 

A good hash function satisûes (approximately) the assumption of independent uni- 
form hashing: each key is equally likely to hash to any of the m slots, indepen- 
dently of where any other keys have hashed to. What does <equally likely= mean 
here? If the hash function is ûxed, any probabilities would have to be based on the 
probability distribution of the input keys. 

Unfortunately, you typically have no way to check this condition, unless you 
happen to know the probability distribution from which the keys are drawn. More- 
over, the keys might not be drawn independently. 
Occasionally you might know the distribution. For example, if you know that 

the keys are random real numbers k independently and uniformly distributed in the 
range 0 හ k < 1, then the hash function 
h.k/ D bkmc 

satisûes the condition of independent uniform hashing. 
A good static hashing approach derives the hash value in a way that you expect 

to be independent of any patterns that might exist in the data. For example, the 
<division method= (discussed in Section 11.3.1) computes the hash value as the 
remainder when the key is divided by a speciûed prime number. This method may 
give good results, if you (somehow) choose a prime number that is unrelated to any 
patterns in the distribution of keys. 
Random hashing, described in Section 11.3.2, picks the hash function to be used 

at random from a suitable family of hashing functions. This approach removes 
any need to know anything about the probability distribution of the input keys, as 
the randomization necessary for good average-case behavior then comes from the 
(known) random process used to pick the hash function from the family of hash 
functions, rather than from the (unknown) process used to create the input keys. 
We recommend that you use random hashing. 

Keys are integers, vectors, or strings 
In practice, a hash function is designed to handle keys that are one of the following 
two types: 
 A short nonnegative integer that ûts in a w-bit machine word. Typical values 

for w would be 32 or 64. 
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 A short vector of nonnegative integers, each of bounded size. For example, 
each element might be an 8-bit byte, in which case the vector is often called a 
(byte) string. The vector might be of variable length. 

To begin, we assume that keys are short nonnegative integers. Handling vector 
keys is more complicated and discussed in Sections 11.3.5 and 11.5.2. 

11.3.1 Static hashing 

Static hashing uses a single, ûxed hash function. The only randomization available 
is through the (usually unknown) distribution of input keys. This section discusses 
two standard approaches for static hashing: the division method and the multiplica- 
tion method. Although static hashing is no longer recommended, the multiplication 
method also provides a good foundation for <nonstatic= hashing4better known as 
random hashing4where the hash function is chosen at random from a suitable 
family of hash functions. 

The division method 

The division method for creating hash functions maps a key k into one of m slots 
by taking the remainder of k divided by m. That is, the hash function is 
h.k/ D k mod m : 
For example, if the hash table has size m D 12 and the key is k D 100, then 
h.k/ D 4. Since it requires only a single division operation, hashing by division is 
quite fast. 

The division method may work well when m is a prime not too close to an exact 
power of 2. There is no guarantee that this method provides good average-case 
performance, however, and it may complicate applications since it constrains the 
size of the hash tables to be prime. 

The multiplication method 

The general multiplication method for creating hash functions operates in two 
steps. First, multiply the key k by a constant A in the range 0 < A < 1 and extract 
the fractional part of kA. Then, multiply this value by m and take the üoor of the 
result. That is, the hash function is 
h.k/ D bm.kA mod 1/c ; 

where <kA mod 1= means the fractional part of kA, that is, kAbkAc. The general 
multiplication method has the advantage that the value of m is not critical and you 
can choose it independently of how you choose the multiplicative constant A. 
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× a D A2 w 

w bits 

k 

r 0 r 1 

h a .k/ 
extract ` bits 

Figure 11.4 The multiply-shift method to compute a hash function. The w-bit representation of 
the key k is multiplied by the w-bit value a D A  2 w . The ` highest-order bits of the lower w-bit 
half of the product form the desired hash value h a .k/. 

The multiply-shift method 

In practice, the multiplication method is best in the special case where the num- 
ber m of hash-table slots is an exact power of 2, so that m D 2 ` for some integer `, 
where ` හ w and w is the number of bits in a machine word. If you choose a ûxed 
w-bit positive integer a D A2 w , where 0 < A < 1 as in the multiplication method 
so that a is in the range 0 < a < 2 w , you can implement the function on most 
computers as follows. We assume that a key k ûts into a single w-bit word. 
Referring to Figure 11.4, ûrst multiply k by the w-bit integer a. The result is a 

2w-bit value r 1 2 w C r 0 , where r 1 is the high-order w-bit word of the product and 
r 0 is the low-order w-bit word of the product. The desired `-bit hash value consists 
of the ` most signiûcant bits of r 0 . (Since r 1 is ignored, the hash function can be 
implemented on a computer that produces only a w-bit product given two w-bit 
inputs, that is, where the multiplication operation computes modulo 2 w .) 
In other words, you deûne the hash function h D h a , where 

h a .k/ D .ka mod 2 w / o .w  `/ (11.2) 
for a ûxed nonzero w-bit value a. Since the product ka of two w-bit words occu- 
pies 2w bits, taking this product modulo 2 w zeroes out the high-order w bits (r 1 ), 
leaving only the low-order w bits (r 0 ). The o operator performs a logical right 
shift by w  ` bits, shifting zeros into the vacated positions on the left, so that the 
` most signiûcant bits of r 0 move into the ` rightmost positions. (It’s the same as 
dividing by 2 w` and taking the üoor of the result.) The resulting value equals the 
` most signiûcant bits of r 0 . The hash function h a can be implemented with three 
machine instructions: multiplication, subtraction, and logical right shift. 

As an example, suppose that k D 123456, ` D 14, m D 2 14 D 16384, and 
w D 32. Suppose further that we choose a D 2654435769 (following a suggestion 
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of Knuth [261]). Then ka D 327706022297664 D .76300  2 32 / C 17612864, and 
so r 1 D 76300 and r 0 D 17612864. The 14 most signiûcant bits of r 0 yield the 
value h a .k/ D 67. 
Even though the multiply-shift method is fast, it doesn’t provide any guarantee 

of good average-case performance. The universal hashing approach presented in 
the next section provides such a guarantee. A simple randomized variant of the 
multiply-shift method works well on the average, when the program begins by 
picking a as a randomly chosen odd integer. 

11.3.2 Random hashing 

Suppose that a malicious adversary chooses the keys to be hashed by some ûxed 
hash function. Then the adversary can choose n keys that all hash to the same slot, 
yielding an average retrieval time of ‚.n/. Any static hash function is vulnerable to 
such terrible worst-case behavior. The only effective way to improve the situation 
is to choose the hash function randomly in a way that is independent of the keys 
that are actually going to be stored. This approach is called random hashing. A 
special case of this approach, called universal hashing, can yield provably good 
performance on average when collisions are handled by chaining, no matter which 
keys the adversary chooses. 

To use random hashing, at the beginning of program execution you select the 
hash function at random from a suitable family of functions. As in the case of 
quicksort, randomization guarantees that no single input always evokes worst-case 
behavior. Because you randomly select the hash function, the algorithm can be- 
have differently on each execution, even for the same set of keys to be hashed, 
guaranteeing good average-case performance. 

Let H be a ûnite family of hash functions that map a given universe U of keys 
into the range f0; 1; : : : ;m  1g. Such a family is said to be universal if for each 
pair of distinct keys k 1 ; k 2 2 U , the number of hash functions h 2 H for which 
h.k 1 / D h.k 2 / is at most jH j =m. In other words, with a hash function randomly 
chosen from H , the chance of a collision between distinct keys k 1 and k 2 is no 
more than the chance 1=m of a collision if h.k 1 / and h.k 2 / were randomly and 
independently chosen from the set f0; 1; : : : ;m  1g. 

Independent uniform hashing is the same as picking a hash function uniformly at 
random from a family of m n hash functions, each member of that family mapping 
the n keys to the m hash values in a different way. 

Every independent uniform random family of hash function is universal, but the 
converse need not be true: consider the case where U D f0; 1; : : : ;m  1g and the 
only hash function in the family is the identity function. The probability that two 
distinct keys collide is zero, even though each key is hashes to a ûxed value. 
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The following corollary to Theorem 11.2 on page 279 says that universal hash- 
ing provides the desired payoff: it becomes impossible for an adversary to pick a 
sequence of operations that forces the worst-case running time. 

Corollary 11.3 
Using universal hashing and collision resolution by chaining in an initially empty 
table with m slots, it takes ‚.s/ expected time to handle any sequence of s I NSERT, 
SEARCH, and DELETE operations containing n D O.m/ I NSERT operations. 

Proof The I NSERT and DELETE operations take constant time. Since the num- 
ber n of insertions is O.m/, we have that ˛ D O.1/. Furthermore, the expected 
time for each SEARCH operation is O.1/, which can be seen by examining the 
proof of Theorem 11.2. That analysis depends only on collision probabilities, 
which are 1=m for any pair k 1 ; k 2 of keys by the choice of an independent uniform 
hash function in that theorem. Using a universal family of hash functions here 
instead of using independent uniform hashing changes the probability of collision 
from 1=m to at most 1=m. By linearity of expectation, therefore, the expected time 
for the entire sequence of s operations is O.s/. Since each operation takes �.1/ 
time, the ‚.s/ bound follows. 

11.3.3 Achievable properties of random hashing 

There is a rich literature on the properties a family H of hash functions can have, 
and how they relate to the efûciency of hashing. We summarize a few of the most 
interesting ones here. 

Let H be a family of hash functions, each with domain U and range f0; 1; : : : ; 
m  1g, and let h be any hash function that is picked uniformly at random from H . 
The probabilities mentioned are probabilities over the picks of h. 
 The family H is uniform if for any key k in U and any slot q in the range 

f0; 1; : : : ;m  1g, the probability that h.k/ D q is 1=m. 
 The family H is universal if for any distinct keys k 1 and k 2 in U , the probability 

that h.k 1 / D h.k 2 / is at most 1=m. 
 The family H of hash functions is -universal if for any distinct keys k 1 and k 2 

in U , the probability that h.k 1 / D h.k 2 / is at most � . Therefore, a universal 
family of hash functions is also 1=m-universal. 2 

2 In the literature, a .c=m/-universal hash function is sometimes called c-universal or c-approxi- 
mately universal. We’ll stick with the notation .c=m/-universal. 
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 The family H is d -independent if for any distinct keys k 1 , k 2 , . . . , k d in U 
and any slots q 1 , q 2 , . . . , q d , not necessarily distinct, in f0; 1; : : : ;m  1g the 
probability that h.k i / D q i for i D 1; 2; : : : ; d is 1=m d . 

Universal hash-function families are of particular interest, as they are the sim- 
plest type supporting provably efûcient hash-table operations for any input data 
set. Many other interesting and desirable properties, such as those noted above, are 
also possible and allow for efûcient specialized hash-table operations. 

11.3.4 Designing a universal family of hash functions 
This section present two ways to design a universal (or � -universal) family of hash 
functions: one based on number theory and another based on a randomized variant 
of the multiply-shift method presented in Section 11.3.1. The ûrst method is a bit 
easier to prove universal, but the second method is newer and faster in practice. 

A universal family of hash functions based on number theory 

We can design a universal family of hash functions using a little number theory. 
You may wish to refer to Chapter 31 if you are unfamiliar with basic concepts in 
number theory. 

Begin by choosing a prime number p large enough so that every possible key k 
lies in the range 0 to p  1, inclusive. We assume here that p has a <reasonable= 
length. (See Section 11.3.5 for a discussion of methods for handling long input 
keys, such as variable-length strings.) Let Z p denote the set f0; 1; : : : ; p  1g, and 
let Z  

p denote the set f1; 2; : : : ; p  1g. Since p is prime, we can solve equations 
modulo p with the methods given in Chapter 31. Because the size of the universe 
of keys is greater than the number of slots in the hash table (otherwise, just use 
direct addressing), we have p > m. 
Given any a 2 Z  

p and any b 2 Z p , deûne the hash function h ab as a linear 
transformation followed by reductions modulo p and then modulo m: 
h ab .k/ D ..ak C b/ mod p/ mod m : (11.3) 
For example, with p D 17 and m D 6, we have 
h 3;4 .8/ D ..3  8 C 4/ mod 17/ mod 6 

D .28 mod 17/ mod 6 
D 11 mod 6 
D 5 : 

Given p and m, the family of all such hash functions is 
H pm D 

˚ 
h ab W a 2 Z  

p and b 2 Z p 
 
: (11.4) 
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Each hash function h ab maps Z p to Z m . This family of hash functions has the nice 
property that the size m of the output range (which is the size of the hash table) is 
arbitrary4it need not be prime. Since you can choose from among p  1 values 
for a and p values for b, the family H pm contains p.p  1/ hash functions. 

Theorem 11.4 
The family H pm of hash functions deûned by equations (11.3) and (11.4) is uni- 
versal. 

Proof Consider two distinct keys k 1 and k 2 from Z p , so that k 1 ¤ k 2 . For a given 
hash function h ab , let 
r 1 D .ak 1 C b/ mod p ; 
r 2 D .ak 2 C b/ mod p : 
We ûrst note that r 1 ¤ r 2 . Why? Since we have r 1  r 2 D a.k 1  k 2 / .mod p/, 
it follows that r 1 ¤ r 2 because p is prime and both a and .k 1  k 2 / are nonzero 
modulo p. By Theorem 31.6 on page 908, their product must also be nonzero 
modulo p. Therefore, when computing any h ab 2 H pm , distinct inputs k 1 and k 2 
map to distinct values r 1 and r 2 modulo p, and there are no collisions yet at the 
<mod p level.= Moreover, each of the possible p.p  1/ choices for the pair .a; b/ 
with a ¤ 0 yields a different resulting pair .r 1 ; r 2 / with r 1 ¤ r 2 , since we can solve 
for a and b given r 1 and r 2 : 
a D 

ã 
.r 1  r 2 /..k 1  k 2 / 1 mod p/ ä mod p ; 

b D .r 1  ak 1 / mod p ; 
where ..k 1  k 2 / 1 mod p/ denotes the unique multiplicative inverse, modulo p, 
of k 1  k 2 . For each of the p possible values of r 1 , there are only p  1 possible 
values of r 2 that do not equal r 1 , making only p.p  1/ possible pairs .r 1 ; r 2 / with 
r 1 ¤ r 2 . Therefore, there is a one-to-one correspondence between pairs .a; b/ with 
a ¤ 0 and pairs .r 1 ; r 2 / with r 1 ¤ r 2 . Thus, for any given pair of distinct inputs 
k 1 and k 2 , if we pick .a; b/ uniformly at random from Z  

p  Z p , the resulting pair 
.r 1 ; r 2 / is equally likely to be any pair of distinct values modulo p. 

Therefore, the probability that distinct keys k 1 and k 2 collide is equal to the 
probability that r 1 D r 2 .mod m/ when r 1 and r 2 are randomly chosen as distinct 
values modulo p. For a given value of r 1 , of the p  1 possible remaining values 
for r 2 , the number of values r 2 such that r 2 ¤ r 1 and r 2 D r 1 .mod m/ is at most l p 
m 

m 
 1 හ 

p C m  1 
m 

 1 (by inequality (3.7) on page 64) 

D 
p  1 
m 

: 
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The probability that r 2 collides with r 1 when reduced modulo m is at most 
..p  1/=m/=.p  1/ D 1=m, since r 2 is equally likely to be any of the p  1 
values in Z p that are different from r 1 , but at most .p  1/=m of those values are 
equivalent to r 1 modulo m. 

Therefore, for any pair of distinct values k 1 ; k 2 2 Z p , 
Pr fh ab .k 1 / D h ab .k 2 /g හ 1=m ; 

so that H pm is indeed universal. 

A 2=m-universal family of hash functions based on the multiply-shift method 

We recommend that in practice you use the following hash-function family based 
on the multiply-shift method. It is exceptionally efûcient and (although we omit 
the proof) provably 2=m-universal. Deûne H to be the family of multiply-shift 
hash functions with odd constants a: 
H D fh a W a is odd, 1 හ a < m, and h a is deûned by equation (11.2)g : (11.5) 

Theorem 11.5 
The family of hash functions H given by equation (11.5) is 2=m-universal. 

That is, the probability that any two distinct keys collide is at most 2=m. In 
many practical situations, the speed of computing the hash function more than 
compensates for the higher upper bound on the probability that two distinct keys 
collide when compared with a universal hash function. 

11.3.5 Hashing long inputs such as vectors or strings 
Sometimes hash function inputs are so long that they cannot be easily encoded 
modulo a reasonably sized prime number p or encoded within a single word of, 
say, 64 bits. As an example, consider the class of vectors, such as vectors of 8-bit 
bytes (which is how strings in many programming languages are stored). A vector 
might have an arbitrary nonnegative length, in which case the length of the input 
to the hash function may vary from input to input. 

Number-theoretic approaches 
One way to design good hash functions for variable-length inputs is to extend the 
ideas used in Section 11.3.4 to design universal hash functions. Exercise 11.3-6 
explores one such approach. 
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Cryptographic hashing 

Another way to design a good hash function for variable-length inputs is to use a 
hash function designed for cryptographic applications. Cryptographic hash func- 
tions are complex pseudorandom functions, designed for applications requiring 
properties beyond those needed here, but are robust, widely implemented, and us- 
able as hash functions for hash tables. 

A cryptographic hash function takes as input an arbitrary byte string and returns 
a ûxed-length output. For example, the NIST standard deterministic cryptographic 
hash function SHA-256 [346] produces a 256-bit (32-byte) output for any input. 

Some chip manufacturers include instructions in their CPU architectures to pro- 
vide fast implementations of some cryptographic functions. Of particular inter- 
est are instructions that efûciently implement rounds of the Advanced Encryption 
Standard (AES), the <AES-NI= instructions. These instructions execute in a few 
tens of nanoseconds, which is generally fast enough for use with hash tables. A 
message authentication code such as CBC-MAC based on AES and the use of the 
AES-NI instructions could be a useful and efûcient hash function. We don’t pursue 
the potential use of specialized instruction sets further here. 

Cryptographic hash functions are useful because they provide a way of imple- 
menting an approximate version of a random oracle. As noted earlier, a random 
oracle is equivalent to an independent uniform hash function family. From a the- 
oretical point of view, a random oracle is an unachievable ideal: a deterministic 
function that provides a randomly selected output for each input. Because it is de- 
terministic, it provides the same output if queried again for the same input. From 
a practical point of view, constructions of hash function families based on crypto- 
graphic hash functions are sensible substitutes for random oracles. 

There are many ways to use a cryptographic hash function as a hash function. 
For example, we could deûne 
h.k/ D SHA-256 .k/ mod m : 
To deûne a family of such hash functions one may prepend a <salt= string a to the 
input before hashing it, as in 
h a .k/ D SHA-256 .a k k/ mod m ; 
where a k k denotes the string formed by concatenating the strings a and k. The lit- 
erature on message authentication codes (MACs) provides additional approaches. 
Cryptographic approaches to hash-function design are becoming more practi- 

cal as computers arrange their memories in hierarchies of differing capacities and 
speeds. Section 11.5 discusses one hash-function design based on the RC6 encryp- 
tion method. 
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Exercises 
11.3-1 
You wish to search a linked list of length n, where each element contains a key 
k along with a hash value h.k/. Each key is a long character string. How might 
you take advantage of the hash values when searching the list for an element with 
a given key? 
11.3-2 
You hash a string of r characters into m slots by treating it as a radix-128 number 
and then using the division method. You can represent the number m as a 32-bit 
computer word, but the string of r characters, treated as a radix-128 number, takes 
many words. How can you apply the division method to compute the hash value of 
the character string without using more than a constant number of words of storage 
outside the string itself? 
11.3-3 
Consider a version of the division method in which h.k/ D k mod m, where 
m D 2 p  1 and k is a character string interpreted in radix 2 p . Show that if string x 
can be converted to string y by permuting its characters, then x and y hash to the 
same value. Give an example of an application in which this property would be 
undesirable in a hash function. 
11.3-4 
Consider a hash table of size m D 1000 and a corresponding hash function h.k/ D 
bm.kA mod 1/c for A D . 

p 
5  1/=2. Compute the locations to which the keys 

61, 62, 63, 64, and 65 are mapped. 
? 11.3-5 

Show that any � -universal family H of hash functions from a ûnite set U to a ûnite 
set Q has �  1= jQj  1= jU j. 

? 11.3-6 
Let U be the set of d -tuples of values drawn from Z p , and let Q D Z p , where p 
is prime. Deûne the hash function h b W U ! Q for b 2 Z p on an input d -tuple 
ha 0 ; a 1 ; : : : ; a d 1 i from U as 

h b .ha 0 ; a 1 ; : : : ; a d 1 i/ D 

 
d 1 X 

j D0 

a j b j 

! 

mod p ; 

and let H D fh b W b 2 Z p g. Argue that H is � -universal for � D .d  1/=p. (Hint: 
See Exercise 31.4-4.) 
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11.4 Open addressing 

This section describes open addressing, a method for collision resolution that, un- 
like chaining, does not make use of storage outside of the hash table itself. In open 
addressing, all elements occupy the hash table itself. That is, each table entry con- 
tains either an element of the dynamic set or NIL. No lists or elements are stored 
outside the table, unlike in chaining. Thus, in open addressing, the hash table can 
<ûll up= so that no further insertions can be made. One consequence is that the 
load factor ˛ can never exceed 1. 

Collisions are handled as follows: when a new element is to be inserted into the 
table, it is placed in its <ûrst-choice= location if possible. If that location is already 
occupied, the new element is placed in its <second-choice= location. The process 
continues until an empty slot is found in which to place the new element. Different 
elements have different preference orders for the locations. 

To search for an element, systematically examine the preferred table slots for 
that element, in order of decreasing preference, until either you ûnd the desired 
element or you ûnd an empty slot and thus verify that the element is not in the 
table. 
Of course, you could use chaining and store the linked lists inside the hash table, 

in the otherwise unused hash-table slots (see Exercise 11.2-4), but the advantage of 
open addressing is that it avoids pointers altogether. Instead of following pointers, 
you compute the sequence of slots to be examined. The memory freed by not 
storing pointers provides the hash table with a larger number of slots in the same 
amount of memory, potentially yielding fewer collisions and faster retrieval. 

To perform insertion using open addressing, successively examine, or probe, the 
hash table until you ûnd an empty slot in which to put the key. Instead of being 
ûxed in the order 0; 1; : : : ;m  1 (which implies a ‚.n/ search time), the sequence 
of positions probed depends upon the key being inserted. To determine which slots 
to probe, the hash function includes the probe number (starting from 0) as a second 
input. Thus, the hash function becomes 
h W U  f0; 1; : : : ;m  1g ! f0; 1; : : : ;m  1g : 

Open addressing requires that for every key k, the probe sequence hh.k;0/;h.k; 1/; 
: : : ; h.k; m  1/i be a permutation of h0; 1; : : : ; m  1i, so that every hash-table 
position is eventually considered as a slot for a new key as the table ûlls up. The 
HASH-I NSERT procedure on the following page assumes that the elements in the 
hash table T are keys with no satellite information: the key k is identical to the 
element containing key k. Each slot contains either a key or NIL (if the slot is 
empty). The HASH-I NSERT procedure takes as input a hash table T and a key k 
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that is assumed to be not already present in the hash table. It either returns the slot 
number where it stores key k or üags an error because the hash table is already full. 

HASH-I NSERT .T; k/ 
1 i D 0 
2 repeat 
3 q D h.k; i/ 
4 if T Œq� == NIL 
5 T Œq� D k 
6 return q 
7 else i D i C 1 
8 until i = = m 
9 error <hash table overüow= 

HASH-SEARCH.T; k/ 
1 i D 0 
2 repeat 
3 q D h.k; i/ 
4 if T Œq� == k 
5 return q 
6 i D i C 1 
7 until T Œq� = = NIL or i == m 
8 return NIL 

The algorithm for searching for key k probes the same sequence of slots that the 
insertion algorithm examined when key k was inserted. Therefore, the search can 
terminate (unsuccessfully) when it ûnds an empty slot, since k would have been 
inserted there and not later in its probe sequence. The procedure HASH-SEARCH 
takes as input a hash table T and a key k, returning q if it ûnds that slot q contains 
key k, or NIL if key k is not present in table T . 
Deletion from an open-address hash table is tricky. When you delete a key from 

slot q, it would be a mistake to mark that slot as empty by simply storing NIL in 
it. If you did, you might be unable to retrieve any key k for which slot q was 
probed and found occupied when k was inserted. One way to solve this problem 
is by marking the slot, storing in it the special value DELETED instead of NIL. The 
HASH-I NSERT procedure then has to treat such a slot as empty so that it can insert 
a new key there. The HASH-SEARCH procedure passes over DELETED values 
while searching, since slots containing DELETED were ûlled when the key being 
searched for was inserted. Using the special value DELETED, however, means that 
search times no longer depend on the load factor ˛, and for this reason chaining is 
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frequently selected as a collision resolution technique when keys must be deleted. 
There is a simple special case of open addressing, linear probing, that avoids the 
need to mark slots with DELETED. Section 11.5.1 shows how to delete from a hash 
table when using linear probing. 

In our analysis, we assume independent uniform permutation hashing (also 
confusingly known as uniform hashing in the literature): the probe sequence of 
each key is equally likely to be any of the mŠ permutations of h0; 1; : : : ; m  1i. 
Independent uniform permutation hashing generalizes the notion of independent 
uniform hashing deûned earlier to a hash function that produces not just a single 
slot number, but a whole probe sequence. True independent uniform permutation 
hashing is difûcult to implement, however, and in practice suitable approximations 
(such as double hashing, deûned below) are used. 
We’ll examine both double hashing and its special case, linear probing. These 

techniques guarantee that hh.k; 0/; h.k; 1/; : : : ; h.k; m  1/i is a permutation 
of h0; 1; : : : ; m  1i for each key k. (Recall that the second parameter to the hash 
function h is the probe number.) Neither double hashing nor linear probing meets 
the assumption of independent uniform permutation hashing, however. Double 
hashing cannot generate more than m 2 different probe sequences (instead of the 
mŠ that independent uniform permutation hashing requires). Nonetheless, double 
hashing has a large number of possible probe sequences and, as you might expect, 
seems to give good results. Linear probing is even more restricted, capable of 
generating only m different probe sequences. 

Double hashing 

Double hashing offers one of the best methods available for open addressing be- 
cause the permutations produced have many of the characteristics of randomly 
chosen permutations. Double hashing uses a hash function of the form 
h.k; i/ D .h 1 .k/ C ih 2 .k// mod m ; 
where both h 1 and h 2 are auxiliary hash functions. The initial probe goes to posi- 
tion T Œh 1 .k/�, and successive probe positions are offset from previous positions by 
the amount h 2 .k/, modulo m. Thus, the probe sequence here depends in two ways 
upon the key k, since the initial probe position h 1 .k/, the step size h 2 .k/, or both, 
may vary. Figure 11.5 gives an example of insertion by double hashing. 

In order for the entire hash table to be searched, the value h 2 .k/ must be rel- 
atively prime to the hash-table size m. (See Exercise 11.4-5.) A convenient way 
to ensure this condition is to let m be an exact power of 2 and to design h 2 so 
that it always produces an odd number. Another way is to let m be prime and to 
design h 2 so that it always returns a positive integer less than m. For example, you 
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Figure 11.5 Insertion by double hashing. The hash table has size 13 with h 1 .k/ D k mod 13 and 
h 2 .k/ D 1 C .k mod 11/. Since 14 D 1 .mod 13/ and 14 D 3 .mod 11/, the key 14 goes into 
empty slot 9, after slots 1 and 5 are examined and found to be occupied. 

could choose m prime and let 
h 1 .k/ D k mod m ; 
h 2 .k/ D 1 C .k mod m 0 / ; 

where m 0 is chosen to be slightly less than m (say, m  1). For example, if 
k D 123456, m D 701, and m 0 D 700, then h 1 .k/ D 80 and h 2 .k/ D 257, so 
that the ûrst probe goes to position 80, and successive probes examine every 257th 
slot (modulo m) until the key has been found or every slot has been examined. 

Although values of m other than primes or exact powers of 2 can in principle 
be used with double hashing, in practice it becomes more difûcult to efûciently 
generate h 2 .k/ (other than choosing h 2 .k/ D 1, which gives linear probing) in a 
way that ensures that it is relatively prime to m, in part because the relative density 
�.m/=m of such numbers for general m may be small (see equation (31.25) on 
page 921). 

When m is prime or an exact power of 2, double hashing produces ‚.m 2 / probe 
sequences, since each possible .h 1 .k/; h 2 .k// pair yields a distinct probe sequence. 
As a result, for such values of m, double hashing appears to perform close to the 
<ideal= scheme of independent uniform permutation hashing. 
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Linear probing 

Linear probing, a special case of double hashing, is the simplest open-addressing 
approach to resolving collisions. As with double hashing, an auxiliary hash func- 
tion h 1 determines the ûrst probe position h 1 .k/ for inserting an element. If slot 
T Œh 1 .k/� is already occupied, probe the next position T Œh 1 .k/ C 1�. Keep going as 
necessary, on up to slot T Œm  1�, and then wrap around to slots T Œ0�, T Œ1�, and so 
on, but never going past slot T Œh 1 .k/  1�. To view linear probing as a special case 
of double hashing, just set the double-hashing step function h 2 to be ûxed at 1: 
h 2 .k/ D 1 for all k. That is, the hash function is 
h.k; i/ D .h 1 .k/ C i/ mod m (11.6) 
for i D 0; 1; : : : ;m  1. The value of h 1 .k/ determines the entire probe sequence, 
and so assuming that h 1 .k/ can take on any value in f0; 1; : : : ;m  1g, linear prob- 
ing allows only m distinct probe sequences. 
We’ll revisit linear probing in Section 11.5.1. 

Analysis of open-address hashing 

As in our analysis of chaining in Section 11.2, we analyze open addressing in terms 
of the load factor ˛ D n=m of the hash table. With open addressing, at most one 
element occupies each slot, and thus n හ m, which implies ˛ හ 1. The analysis 
below requires ˛ to be strictly less than 1, and so we assume that at least one slot 
is empty. Because deleting from an open-address hash table does not really free up 
a slot, we assume as well that no deletions occur. 

For the hash function, we assume independent uniform permutation hashing. In 
this idealized scheme, the probe sequence hh.k; 0/; h.k; 1/; : : : ; h.k;m  1/i used 
to insert or search for each key k is equally likely to be any permutation of h0; 1; 
: : : ;m  1i. Of course, any given key has a unique ûxed probe sequence associated 
with it. What we mean here is that, considering the probability distribution on the 
space of keys and the operation of the hash function on the keys, each possible 
probe sequence is equally likely. 

We now analyze the expected number of probes for hashing with open address- 
ing under the assumption of independent uniform permutation hashing, beginning 
with the expected number of probes made in an unsuccessful search (assuming, as 
stated above, that ˛ < 1). 

The bound proven, of 1=.1  ˛/ D 1 C ˛ C ˛ 2 C ˛ 3 C   , has an intuitive in- 
terpretation. The ûrst probe always occurs. With probability approximately ˛, the 
ûrst probe ûnds an occupied slot, so that a second probe happens. With probability 
approximately ˛ 2 , the ûrst two slots are occupied so that a third probe ensues, and 
so on. 
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Theorem 11.6 
Given an open-address hash table with load factor ˛ D n=m < 1 , the expected 
number of probes in an unsuccessful search is at most 1=.1  ˛/, assuming inde- 
pendent uniform permutation hashing and no deletions. 

Proof In an unsuccessful search, every probe but the last accesses an occupied 
slot that does not contain the desired key, and the last slot probed is empty. Let the 
random variable X denote the number of probes made in an unsuccessful search, 
and deûne the event A i , for i D 1; 2; : : :, as the event that an i th probe occurs 
and it is to an occupied slot. Then the event fX  i g is the intersection of events 
A 1 \A 2 \  \A i 1 . We bound Pr fX  i g by bounding Pr fA 1 \ A 2 \    \ A i 1 g. 
By Exercise C.2-5 on page 1190, 
Pr fA 1 \ A 2 \    \ A i 1 g D Pr fA 1 g  Pr fA 2 j A 1 g  Pr fA 3 j A 1 \ A 2 g    

Pr fA i 1 j A 1 \ A 2 \    \ A i 2 g : 

Since there are n elements and m slots, Pr fA 1 g D n=m. For j > 1, the probability 
that there is a j th probe and it is to an occupied slot, given that the ûrst j  1 
probes were to occupied slots, is .n  j C 1/=.m  j C 1/. This probability follows 
because the j th probe would be ûnding one of the remaining .n  .j  1// elements 
in one of the .m  .j  1// unexamined slots, and by the assumption of independent 
uniform permutation hashing, the probability is the ratio of these quantities. Since 
n < m implies that .n  j /=.m  j / හ n=m for all j in the range 0 හ j < m, it 
follows that for all i in the range 1 හ i හ m, we have 

Pr fX  i g D 
n 
m 

 n  1 
m  1 

 n  2 
m  2 

   n  i C 2 
m  i C 2 

හ 
 n 
m 

Í i 1 

D ˛ i 1 : 

The product in the ûrst line has i  1 factors. When i D 1, the product is 1, the 
identity for multiplication, and we get Pr fX  1g D 1, which makes sense, since 
there must always be at least 1 probe. If each of the ûrst n probes is to an occupied 
slot, then all occupied slots have been probed. Then, the .n C 1/st probe must 
be to an empty slot, which gives Pr fX  i g D 0 for i > n C 1. Now, we use 
equation (C.28) on page 1193 to bound the expected number of probes: 

E ŒX� D 
1 X 

i D1 

Pr fX  i g 

D 
nC1 X 

i D1 

Pr fX  i g C 
X 

i>nC1 

Pr fX  i g 
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හ 
1 X 

i D1 

˛ i 1 C 0 

D 
1 X 

i D0 

˛ i 

D 
1 

1  ˛ 
(by equation (A.7) on page 1142 because 0 හ ˛ < 1) . 

If ̨  is a constant, Theorem 11.6 predicts that an unsuccessful search runs in O.1/ 
time. For example, if the hash table is half full, the average number of probes in an 
unsuccessful search is at most 1=.1  :5/ D 2. If it is 90% full, the average number 
of probes is at most 1=.1  :9/ D 10. 
Theorem 11.6 yields almost immediately how well the HASH-I NSERT procedure 

performs. 

Corollary 11.7 
Inserting an element into an open-address hash table with load factor ˛, where 
˛ < 1, requires at most 1=.1  ˛/ probes on average, assuming independent uni- 
form permutation hashing and no deletions. 

Proof An element is inserted only if there is room in the table, and thus ˛ < 1. 
Inserting a key requires an unsuccessful search followed by placing the key into the 
ûrst empty slot found. Thus, the expected number of probes is at most 1=.1  ̨ /. 

It takes a little more work to compute the expected number of probes for a suc- 
cessful search. 

Theorem 11.8 
Given an open-address hash table with load factor ˛ < 1, the expected number of 
probes in a successful search is at most 
1 
˛ 

ln 1 
1  ˛ 

; 

assuming independent uniform permutation hashing with no deletions and assum- 
ing that each key in the table is equally likely to be searched for. 

Proof A search for a key k reproduces the same probe sequence as when the 
element with key k was inserted. If k was the .i C 1/st key inserted into the 
hash table, then the load factor at the time it was inserted was i=m, and so by 
Corollary 11.7, the expected number of probes made in a search for k is at most 
1=.1  i=m/ D m=.m  i/. Averaging over all n keys in the hash table gives us 
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the expected number of probes in a successful search: 

1 
n 

n1 X 

i D0 

m 
m  i 

D 
m 
n 

n1 X 

i D0 

1 
m  i 

D 
1 
˛ 

m X 

kDmnC1 

1 
k 

හ 
1 
˛ 

Z m 

mn 

1 
x 
dx (by inequality (A.19) on page 1150) 

D 
1 
˛ 
.ln m  ln.m  n// 

D 
1 
˛ 

ln m 
m  n 

D 
1 
˛ 

ln 1 
1  ˛ 

: 

If the hash table is half full, the expected number of probes in a successful search 
is less than 1:387. If the hash table is 90% full, the expected number of probes is 
less than 2:559. If ˛ D 1, then in an unsuccessful search, all m slots must be 
probed. Exercise 11.4-4 asks you to analyze a successful search when ˛ D 1. 

Exercises 
11.4-1 
Consider inserting the keys 10; 22; 31; 4; 15; 28; 17; 88; 59 into a hash table of 
length m D 11 using open addressing. Illustrate the result of inserting these keys 
using linear probing with h.k; i/ D .k C i/ mod m and using double hashing with 
h 1 .k/ D k and h 2 .k/ D 1 C .k mod .m  1//. 
11.4-2 
Write pseudocode for HASH-DELETE that ûlls the deleted key’s slot with the spe- 
cial value DELETED, and modify HASH-SEARCH and HASH-I NSERT as needed to 
handle DELETED. 
11.4-3 
Consider an open-address hash table with independent uniform permutation hash- 
ing and no deletions. Give upper bounds on the expected number of probes in an 
unsuccessful search and on the expected number of probes in a successful search 
when the load factor is 3=4 and when it is 7=8. 



11.5 Practical considerations 301 

11.4-4 
Show that the expected number of probes required for a successful search when 
˛ D 1 (that is, when n D m), is H m , the mth harmonic number. 

? 11.4-5 
Show that, with double hashing, if m and h 2 .k/ have greatest common divisor 
d  1 for some key k, then an unsuccessful search for key k examines .1=d/th 
of the hash table before returning to slot h 1 .k/. Thus, when d D 1, so that m 
and h 2 .k/ are relatively prime, the search may examine the entire hash table. (Hint: 
See Chapter 31.) 

? 11.4-6 
Consider an open-address hash table with a load factor ˛. Approximate the nonzero 
value ˛ for which the expected number of probes in an unsuccessful search equals 
twice the expected number of probes in a successful search. Use the upper bounds 
given by Theorems 11.6 and 11.8 for these expected numbers of probes. 

11.5 Practical considerations 

Efûcient hash table algorithms are not only of theoretical interest, but also of im- 
mense practical importance. Constant factors can matter. For this reason, this 
section discusses two aspects of modern CPUs that are not included in the standard 
RAM model presented in Section 2.2: 
Memory hierarchies: The memory of modern CPUs has a number of levels, 

from the fast registers, through one or more levels of cache memory, to the 
main-memory level. Each successive level stores more data than the previous 
level, but access is slower. As a consequence, a complex computation (such as 
a complicated hash function) that works entirely within the fast registers can 
take less time than a single read operation from main memory. Furthermore, 
cache memory is organized in cache blocks of (say) 64 bytes each, which are 
always fetched together from main memory. There is a substantial beneût for 
ensuring that memory usage is local: reusing the same cache block is much 
more efûcient than fetching a different cache block from main memory. 
The standard RAM model measures efûciency of a hash-table operation by 
counting the number of hash-table slots probed. In practice, this metric is only 
a crude approximation to the truth, since once a cache block is in the cache, 
successive probes to that cache block are much faster than probes that must 
access main memory. 



302 Chapter 11 Hash Tables 

Advanced instruction sets: Modern CPUs may have sophisticated instruction 
sets that implement advanced primitives useful for encryption or other forms 
of cryptography. These instructions may be useful in the design of exception- 
ally efûcient hash functions. 

Section 11.5.1 discusses linear probing, which becomes the collision-resolution 
method of choice in the presence of a memory hierarchy. Section 11.5.2 suggests 
how to construct <advanced= hash functions based on cryptographic primitives, 
suitable for use on computers with hierarchical memory models. 

11.5.1 Linear probing 

Linear probing is often disparaged because of its poor performance in the standard 
RAM model. But linear probing excels for hierarchical memory models, because 
successive probes are usually to the same cache block of memory. 

Deletion with linear probing 

Another reason why linear probing is often not used in practice is that deletion 
seems complicated or impossible without using the special DELETED value. Yet 
we’ll now see that deletion from a hash table based on linear probing is not all 
that difûcult, even without the DELETED marker. The deletion procedure works 
for linear probing, but not for open-address probing in general, because with lin- 
ear probing keys all follow the same simple cyclic probing sequence (albeit with 
different starting points). 

The deletion procedure relies on an <inverse= function to the linear-probing hash 
function h.k; i/ D .h 1 .k/ C i/ mod m, which maps a key k and a probe number i 
to a slot number in the hash table. The inverse function g maps a key k and a slot 
number q, where 0 හ q < m, to the probe number that reaches slot q: 
g.k; q/ D .q  h 1 .k// mod m : 
If h.k; i/ D q, then g.k; q/ D i , and so h.k; g.k; q// D q. 

The procedure LINEAR-PROBING-HASH-DELETE on the facing page deletes 
the key stored in position q from hash table T . Figure 11.6 shows how it works. 
The procedure ûrst deletes the key in position q by setting T Œq� to NIL in line 2. It 
then searches for a slot q 0 (if any) that contains a key that should be moved to the 
slot q just vacated by key k. Line 9 asks the critical question: does the key k 0 in 
slot q 0 need to be moved to the vacated slot q in order to preserve the accessibility 
of k 0 ? If g.k 0 ; q/ < g.k 0 ; q 0 /, then during the insertion of k 0 into the table, slot q 
was examined but found to be already occupied. But now slot q, where a search 
will look for k 0 , is empty. In this case, key k 0 moves to slot q in line 10, and the 
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Figure 11.6 Deletion in a hash table that uses linear probing. The hash table has size 10 with 
h 1 .k/ D k mod 10. (a) The hash table after inserting keys in the order 74, 43, 93, 18, 82, 38, 92. 
(b) The hash table after deleting the key 43 from slot 3. Key 93 moves up to slot 3 to keep it 
accessible, and then key 92 moves up to slot 5 just vacated by key 93. No other keys need to be 
moved. 

search continues, to see whether any later key also needs to be moved to the slot q 0 
that was just freed up when k 0 moved. 

LINEAR-PROBING-HASH-DELETE .T; q/ 
1 while TRUE 
2 T Œq� D NIL // make slot q empty 
3 q 0 D q // starting point for search 
4 repeat 
5 q 0 D .q 0 C 1/ mod m // next slot number with linear probing 
6 k 0 D T Œq 0 � // next key to try to move 
7 if k 0 = = NIL 
8 return // return when an empty slot is found 
9 until g.k 0 ; q/ < g.k 0 ; q 0 / // was empty slot q probed before q 0 ? 
10 T Œq� D k 0 // move k 0 into slot q 
11 q D q 0 // free up slot q 0 

Analysis of linear probing 

Linear probing is popular to implement, but it exhibits a phenomenon known as 
primary clustering. Long runs of occupied slots build up, increasing the average 
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search time. Clusters arise because an empty slot preceded by i full slots gets ûlled 
next with probability .i C 1/=m. Long runs of occupied slots tend to get longer, 
and the average search time increases. 

In the standard RAM model, primary clustering is a problem, and general dou- 
ble hashing usually performs better than linear probing. By contrast, in a hierar- 
chical memory model, primary clustering is a beneûcial property, as elements are 
often stored together in the same cache block. Searching proceeds through one 
cache block before advancing to search the next cache block. With linear prob- 
ing, the running time for a key k of HASH-I NSERT, HASH-SEARCH, or LINEAR- 
PROBING-HASH-DELETE is at most proportional to the distance from h 1 .k/ to the 
next empty slot. 
The following theorem is due to Pagh et al. [351]. A more recent proof is given 

by Thorup [438]. We omit the proof here. The need for 5-independence is by no 
means obvious; see the cited proofs. 

Theorem 11.9 
If h 1 is 5-independent and ˛ හ 2=3, then it takes expected constant time to search 
for, insert, or delete a key in a hash table using linear probing. 
(Indeed, the expected operation time is O.1=� 2 / for ˛ D 1  � .) 

? 11.5.2 Hash functions for hierarchical memory models 
This section illustrates an approach for designing efûcient hash tables in a modern 
computer system having a memory hierarchy. 

Because of the memory hierarchy, linear probing is a good choice for resolving 
collisions, as probe sequences are sequential and tend to stay within cache blocks. 
But linear probing is most efûcient when the hash function is complex (for exam- 
ple, 5-independent as in Theorem 11.9). Fortunately, having a memory hierarchy 
means that complex hash functions can be implemented efûciently. 
As noted in Section 11.3.5, one approach is to use a cryptographic hash func- 

tion such as SHA-256. Such functions are complex and sufûciently random for 
hash table applications. On machines with specialized instructions, cryptographic 
functions can be quite efûcient. 

Instead, we present here a simple hash function based only on addition, multi- 
plication, and swapping the halves of a word. This function can be implemented 
entirely within the fast registers, and on a machine with a memory hierarchy, its 
latency is small compared with the time taken to access a random slot of the hash 
table. It is related to the RC6 encryption algorithm and can f or practical purposes 
be considered a <random oracle.= 
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The wee hash function 

Let w denote the word size of the machine (e.g., w D 64), assumed to be even, 
and let a and b be w-bit unsigned (nonnegative) integers such that a is odd. Let 
swap.x/ denote the w-bit result of swapping the two w=2-bit halves of w-bit in- 
put x . That is, 
swap.x/ D .x o .w=2// C .x n .w=2// 

where <o= is <logical right shift= (as in equation (11.2)) and <n is <left shift.= 
Deûne 
f a .k/ D swap..2k 2 C ak/ mod 2 w / : 

Thus, to compute f a .k/, evaluate the quadratic function 2k 2 C ak modulo 2 w and 
then swap the left and right halves of the result. 

Let r denote a desired number of <rounds= for the computation of the hash func- 
tion. We’ll use r D 4, but the hash function is well deûned for any nonnegative r . 
Denote by f .r/ a .k/ the result of iterating f a a total of r times (that is, r rounds) 
starting with input value k. For any odd a and any r  0, the function f .r/ a , al- 
though complicated, is one-to-one (see Exercise 11.5-1). A cryptographer would 
view f .r/ a as a simple block cipher operating on w-bit input blocks, with r rounds 
and key a. 
We ûrst deûne the wee hash function h for short inputs, where by <short= we 

means <whose length t is at most w-bits,= so that the input ûts within one computer 
word. We would like inputs of different lengths to be hashed differently. The wee 
hash function h a;b;t;r .k/ for parameters a, b, and r on t -bit input k is deûned as 
h a;b;t;r .k/ D 

ã 
f .r/ aC2t .k C b/ 

ä mod m : (11.7) 
That is, the hash value for t -bit input k is obtained by applying f .r/ aC2t to k C b, then 
taking the ûnal result modulo m. Adding the value b provides hash-dependent 
randomization of the input, in a way that ensures that for variable-length inputs the 
0-length input does not have a ûxed hash value. Adding the value 2t to a ensures 
that the hash function acts differently for inputs of different lengths. (We use 2t 
rather than t to ensure that the key a C 2t is odd if a is odd.) We call this hash 
function <wee= because it uses a tiny amount of memory4more precisely, it can 
be implemented efûciently using only the computer’s fast registers. (This hash 
function does not have a name in the literature; it is a variant we developed for this 
textbook.) 

Speed of the wee hash function 

It is surprising how much efûciency can be bought with locality. Experiments (un- 
published, by the authors) suggest that evaluating the wee hash function takes less 
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time than probing a single randomly chosen slot in a hash table. These experi- 
ments were run on a laptop (2019 MacBook Pro) with w D 64 and a D 123. For 
large hash tables, evaluating the wee hash function was 2 to 10 times faster than 
performing a single probe of the hash table. 

The wee hash function for variable-length inputs 
Sometimes inputs are long4more than one w-bit word in length4or have variable 
length, as discussed in Section 11.3.5. We can extend the wee hash function, de- 
ûned above for inputs that are at most single w-bit word in length, to handle long 
or variable-length inputs. Here is one method for doing so. 

Suppose that an input k has length t (measured in bits). Break k into a sequence 
hk 1 ; k 2 ; : : : ; k u i of w-bit words, where u D dt=we, k 1 contains the least-signiûcant 
w bits of k, and k u contains the most signiûcant bits. If t is not a multiple of w, 
then k u contains fewer than w bits, in which case, pad out the unused high-order 
bits of k u with 0-bits. Deûne the function chop to return a sequence of the w-bit 
words in k: 
chop.k/ D hk 1 ; k 2 ; : : : ; k u i : 
The most important property of the chop operation is that it is one-to-one, given t : 
for any two t -bit keys k and k 0 , if k ¤ k 0 then chop.k/ ¤ chop.k 0 /, and k can be 
derived from chop.k/ and t . The chop operation also has the useful property that a 
single-word input key yields a single-word output sequence: chop.k/ D hki. 

With the chop function in hand, we specify the wee hash function h a;b;t;r .k/ for 
an input k of length t bits as follows: 
h a;b;t;r .k/ D WEE.k; a; b; t; r;m/ ; 
where the procedure WEE deûned on the facing page iterates through the elements 
of the w-bit words returned by chop.k/, applying f r 

a to the sum of the current 
word k i and the previously computed hash value so far, ûnally returning the result 
obtained modulo m. This deûnition for variable-length and long (multiple-word) 
inputs is a consistent extension of the deûnition in equation (11.7) for short (single- 
word) inputs. For practical use, we recommend that a be a randomly chosen odd 
w-bit word, b be a randomly chosen w-bit word, and that r D 4. 

Note that the wee hash function is really a hash function family, with individ- 
ual hash functions determined by parameters a; b; t; r; and m. The (approximate) 
5-independence of the wee hash function family for variable-length inputs can be 
argued based on the assumption that the 1-word wee hash function is a random or- 
acle and on the security of the cipher-block-chaining message authentication code 
(CBC-MAC), as studied by Bellare et al. [42]. The case here is actually simpler 
than that studied in the literature, since if two messages have different lengths t 
and t 0 , then their <keys= are different: a C 2t ¤ a C 2t 0 . We omit the details. 
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WEE.k; a; b; t; r;m/ 
1 u D dt=we 
2 hk 1 ; k 2 ; : : : ; k u i D chop.k/ 
3 q D b 
4 for i D 1 to u 
5 q D f .r/ aC2t .k i C q/ 
6 return q mod m 

This deûnition of a cryptographically inspired hash-function family is meant 
to be realistic, yet only illustrative, and many variations and improvements are 
possible. See the chapter notes for suggestions. 

In summary, we see that when the memory system is hierarchical, it becomes 
advantageous to use linear probing (a special case of double hashing), since suc- 
cessive probes tend to stay in the same cache block. Furthermore, hash functions 
that can be implemented using only the computer’s fast registers are exceptionally 
efûcient, so they can be quite complex and even cryptographically inspired, pro- 
viding the high degree of independence needed for linear probing to work most 
efûciently. 

Exercises 
? 11.5-1 

Complete the argument that for any odd positive integer a and any integer r  0, 
the function f .r/ a is one-to-one. Use a proof by contradiction and make use of the 
fact that the function f a works modulo 2 w . 

? 11.5-2 
Argue that a random oracle is 5-independent. 

? 11.5-3 
Consider what happens to the value f .r/ a .k/ as we üip a single bit k i of the input 
value k, for various values of r . Let k D 

P w1 
i D0 k i 2 i and g a .k/ D 

P w1 
j D0 b j 2 j 

deûne the bit values k i in the input (with k 0 the least-signiûcant bit) and the bit 
values b j in g a .k/ D .2k 2 C ak/ mod 2 w (where g a .k/ is the value that, when 
its halves are swapped, becomes f a .k/). Suppose that üipping a single bit k i of 
the input k may cause any bit b j of g a .k/ to üip, for j  i . What is the least 
value of r for which üipping the value of any single bit k i may cause any bit of the 
output f .r/ a .k/ to üip? Explain. 
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Problems 

11-1 Longest-probe bound for hashing 
Suppose you are using an open-addressed hash table of size m to store n හ m=2 
items. 
a. Assuming independent uniform permutation hashing, show that for i D 
1; 2; : : : ; n, the probability is at most 2 p that the i th insertion requires strictly 
more than p probes. 

b. Show that for i D 1; 2; : : : ; n, the probability is O.1=n 2 / that the i th insertion 
requires more than 2 lg n probes. 

Let the random variable X i denote the number of probes required by the i th inser- 
tion. You have shown in part (b) that Pr fX i > 2 lg ng D O.1=n 2 /. Let the random 
variable X D max fX i W 1 හ i හ ng denote the maximum number of probes re- 
quired by any of the n insertions. 
c. Show that Pr fX > 2 lg ng D O.1=n/. 

d. Show that the expected length E ŒX� of the longest probe sequence is O.lg n/. 

11-2 Searching a static set 
You are asked to implement a searchable set of n elements in which the keys are 
numbers. The set is static (no I NSERT or DELETE operations), and the only opera- 
tion required is SEARCH. You are given an arbitrary amount of time to preprocess 
the n elements so that SEARCH operations run quickly. 
a. Show how to implement SEARCH in O.lg n/ worst-case time using no extra 

storage beyond what is needed to store the elements of the set themselves. 

b. Consider implementing the set by open-address hashing on m slots, and assume 
independent uniform permutation hashing. What is the minimum amount of ex- 
tra storage m  n required to make the average performance of an unsuccessful 
SEARCH operation be at least as good as the bound in part (a)? Your answer 
should be an asymptotic bound on m  n in terms of n. 

11-3 Slot-size bound for chaining 
Given a hash table with n slots, with collisions resolved by chaining, suppose that 
n keys are inserted into the table. Each key is equally likely to be hashed to each 
slot. Let M be the maximum number of keys in any slot after all the keys have 
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been inserted. Your mission is to prove an O.lg n= lg lg n/ upper bound on E ŒM �, 
the expected value of M . 
a. Argue that the probability Q k that exactly k keys hash to a particular slot is 

given by 

Q k D 
Î 
1 
n 

Ï k Î 
1  

1 
n 

Ï nk 
 
n 
k 

! 

: 

b. Let P k be the probability that M D k, that is, the probability that the slot 
containing the most keys contains k keys. Show that P k හ nQ k . 

c. Show that Q k < e k =k k . Hint: Use Stirling’s approximation, equation (3.25) 
on page 67. 

d. Show that there exists a constant c > 1 such that Q k 0 < 1=n 3 for k 0 D 
c lg n= lg lg n. Conclude that P k < 1=n 2 for k  k 0 D c lg n= lg lg n. 

e. Argue that 

E ŒM � හ Pr 
ï 
M > 

c lg n 
lg lg n 

ð 
 n C Pr 

ï 
M හ 

c lg n 
lg lg n 

ð 
 c lg n 

lg lg n 
: 

Conclude that E ŒM � D O.lg n= lg lg n/. 

11-4 Hashing and authentication 
Let H be a family of hash functions in which each hash function h 2 H maps the 
universe U of keys to f0; 1; : : : ;m  1g. 
a. Show that if the family H of hash functions is 2-independent, then it is univer- 

sal. 

b. Suppose that the universe U is the set of n-tuples of values drawn from 
Z p D f0; 1; : : : ; p  1g, where p is prime. Consider an element x D 
hx 0 ; x 1 ; : : : ; x n1 i 2 U . For any n-tuple a D ha 0 ; a 1 ; : : : ; a n1 i 2 U , de- 
ûne the hash function h a by 

h a .x/ D 

 
n1 X 

j D0 

a j x j 

! 

mod p : 

Let H D fh a W a 2 U g. Show that H is universal, but not 2-independent. 
(Hint: Find a key for which all hash functions in H produce the same value.) 
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c. Suppose that we modify H slightly from part (b): for any a 2 U and for any 
b 2 Z p , deûne 

h 0 ab .x/ D 

 
n1 X 

j D0 

a j x j C b 

! 

mod p 

and H 0 D fh 0 
ab W a 2 U and b 2 Z p g. Argue that H 0 is 2-independent. (Hint: 

Consider ûxed n-tuples x 2 U and y 2 U , with x i ¤ y i for some i . What 
happens to h 0 

ab .x/ and h 0 
ab .y/ as a i and b range over Z p ?) 

d. Alice and Bob secretly agree on a hash function h from a 2-independent fam- 
ily H of hash functions. Each h 2 H maps from a universe of keys U to Z p , 
where p is prime. Later, Alice sends a message m to Bob over the internet, 
where m 2 U . She authenticates this message to Bob by also sending an au- 
thentication tag t D h.m/, and Bob checks that the pair .m; t/ he receives 
indeed satisûes t D h.m/. Suppose that an adversary intercepts .m; t/ en route 
and tries to fool Bob by replacing the pair .m; t/ with a different pair .m 0 ; t 0 /. 
Argue that the probability that the adversary succeeds in fooling Bob into ac- 
cepting .m 0 ; t 0 / is at most 1=p, no matter how much computing power the ad- 
versary has, even if the adversary knows the family H of hash functions used. 

Chapter notes 

The books by Knuth [261] and Gonnet and Baeza-Yates [193] are excellent ref- 
erences for the analysis of hashing algorithms. Knuth credits H. P. Luhn (1953) 
for inventing hash tables, along with the chaining method for resolving collisions. 
At about the same time, G. M. Amdahl originated the idea of open addressing. 
The notion of a random oracle was introduced by Bellare et al. [43]. Carter and 
Wegman [80] introduced the notion of universal families of hash functions in 1979. 
Dietzfelbinger et al. [113] invented the multiply-shift hash function and gave a 

proof of Theorem 11.5. Thorup [437] provides extensions and additional analysis. 
Thorup [438] gives a simple proof that linear probing with 5-independent hashing 
takes constant expected time per operation. Thorup also describes the method for 
deletion in a hash table using linear probing. 
Fredman, Koml´ os, and Szemer´ edi [154] developed a perfect hashing scheme 

for static sets4<perfect= because all collisions are avoided. An extension of their 
method to dynamic sets, handling insertions and deletions in amortized expected 
time O.1/, has been given by Dietzfelbinger et al. [114]. 
The wee hash function is based on the RC6 encryption algorithm [379]. Leiser- 

son et al. [292] propose an <RC6MIX= function that is essentially the same as the 
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wee hash function. They give experimental evidence that it has good randomness, 
and they also give a <DOTMIX= function for dealing with variable-length inputs. 
Bellare et al. [42] provide an analysis of the security of the cipher-block-chaining 
message authentication code. This analysis implies that the wee hash function has 
the desired pseudorandomness properties. 


