
10 Elementary Data Structures 

In this chapter, we examine the representation of dynamic sets by simple data struc- 
tures that use pointers. Although you can construct many complex data structures 
using pointers, we present only the rudimentary ones: arrays, matrices, stacks, 
queues, linked lists, and rooted trees. 

10.1 Simple array-based data structures: arrays, matrices, stacks, queues 

10.1.1 Arrays 
We assume that, as in most programming languages, an array is stored as a con- 
tiguous sequence of bytes in memory. If the ûrst element of an array has index s 
(for example, in an array with 1-origin indexing, s D 1), the array starts at memory 
address a, and each array element occupies b bytes, then the i th element occupies 
bytes a C b.i  s/ through a C b.i  s C 1/  1. Since most of the arrays in this book 
are indexed starting at 1, and a few starting at 0, we can simplify these formulas a 
little. When s D 1, the i th element occupies bytes a C b.i  1/ through a C bi  1, 
and when s D 0, the i th element occupies bytes a C bi through a C b.i C 1/  1. 
Assuming that the computer can access all memory locations in the same amount 
of time (as in the RAM model described in Section 2.2), it takes constant time to 
access any array element, regardless of the index. 

Most programming languages require each element of a particular array to be 
the same size. If the elements of a given array might occupy different numbers 
of bytes, then the above formulas fail to apply, since the element size b is not a 
constant. In such cases, the array elements are usually objects of varying sizes, 
and what actually appears in each array element is a pointer to the object. The 
number of bytes occupied by a pointer is typically the same, no matter what the 
pointer references, so that to access an object in an array, the above formulas give 
the address of the pointer to the object and then the pointer must be followed to 
access the object itself. 
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Figure 10.1 Four ways to store the 2  3 matrix M from equation (10.1). (a) In row-major order, 
in a single array. (b) In column-major order, in a single array. (c) In row-major order, with one array 
per row (tan) and a single array (blue) of pointers to the row arrays. (d) In column-major order, with 
one array per column (tan) and a single array (blue) of pointers to the column arrays. 

10.1.2 Matrices 
We typically represent a matrix or two-dimensional array by one or more one- 
dimensional arrays. The two most common ways to store a matrix are row-major 
and column-major order. Let’s consider an mn matrix4a matrix with m rows and 
n columns. In row-major order, the matrix is stored row by row, and in column- 
major order, the matrix is stored column by column. For example, consider the 
2  3 matrix 

M D 
Ï 
1 2 3 
4 5 6 

Ð 
: (10.1) 

Row-major order stores the two rows 1 2 3 and 4 5 6, whereas column-major 
order stores the three columns 1 4; 2 5; and 3 6. 
Parts (a) and (b) of Figure 10.1 show how to store this matrix using a single 

one-dimensional array. It’s stored in row-major order in part (a) and in column- 
major order in part (b). If the rows, columns, and the single array all are indexed 
starting at s , then MŒi; j �4the element in row i and column j 4is at array in- 
dex s C .n.i  s// C .j  s/ with row-major order and s C .m.j  s// C .i  s/ 
with column-major order. When s D 1, the single-array indices are n.i  1/ C j 
with row-major order and i C m.j  1/ with column-major order. When s D 0, 
the single-array indices are simpler: ni C j with row-major order and i C mj 
with column-major order. For the example matrix M with 1-origin indexing, ele- 
ment MŒ2; 1� is stored at index 3.2 1/ C1 D 4 in the single array using row-major 
order and at index 2 C 2.1  1/ D 2 using column-major order. 
Parts (c) and (d) of Figure 10.1 show multiple-array strategies for storing the 

example matrix. In part (c), each row is stored in its own array of length n, shown 
in tan. Another array, with m elements, shown in blue, points to the m row arrays. 
If we call the blue array A, then AŒi� points to the array storing the entries for row i 
of M , and array element AŒi�Œj � stores matrix element MŒi; j �. Part (d) shows the 
column-major version of the multiple-array representation, with n arrays, each of 
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length m, representing the n columns. Matrix element MŒi; j � is stored in array 
element AŒj �Œi �. 
Single-array representations are typically more efûcient on modern machines 

than multiple-array representations. But multiple-array representations can some- 
times be more üexible, for example, allowing for <ragged arrays,= in which the 
rows in the row-major version may have different lengths, or symmetrically for the 
column-major version, where columns may have different lengths. 
Occasionally, other schemes are used to store matrices. In the block representa- 

tion, the matrix is divided into blocks, and each block is stored contiguously. For 
example, a 4  4 matrix that is divided into 2  2 blocks, such as  
1 2 3 4 
5 6 7 8 
9 10 11 12 
13 14 15 16 

˘ 

might be stored in a single array in the order h1; 2; 5; 6; 3; 4; 7; 8; 9; 10; 13; 14; 11; 
12; 15; 16i. 

10.1.3 Stacks and queues 
Stacks and queues are dynamic sets in which the element removed from the set 
by the DELETE operation is prespeciûed. In a stack, the element deleted from 
the set is the one most recently inserted: the stack implements a last-in, ûrst-out, 
or LIFO, policy. Similarly, in a queue, the element deleted is always the one that 
has been in the set for the longest time: the queue implements a ûrst-in, ûrst-out, 
or FIFO, policy. There are several efûcient ways to implement stacks and queues 
on a computer. Here, you will see how to use an array with attributes to store them. 

Stacks 
The I NSERT operation on a stack is often called PUSH, and the DELETE opera- 
tion, which does not take an element argument, is often called POP. These names 
are allusions to physical stacks, such as the spring-loaded stacks of plates used 
in cafeterias. The order in which plates are popped from the stack is the reverse 
of the order in which they were pushed onto the stack, since only the top plate is 
accessible. 
Figure 10.2 shows how to implement a stack of at most n elements with an 

array SŒ1 W n�. The stack has attributes S: top, indexing the most recently inserted 
element, and S: size, equaling the size n of the array. The stack consists of elements 
SŒ1 W S: top�, where SŒ1� is the element at the bottom of the stack and SŒS: top� is 
the element at the top. 
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1 2 3 4 5 6 7 

S 15 6 2 9 
1 2 3 4 5 6 7 

S 15 6 2 9 17 3 
1 2 3 4 5 6 7 

S 15 6 2 9 17 3 

(a) (b) (c) 

S: top D 4 S: top D 6 S: top D 5 

Figure 10.2 An array implementation of a stack S . Stack elements appear only in the tan positions. 
(a) Stack S has 4 elements. The top element is 9. (b) Stack S after the calls PUSH.S; 17/ and 
PUSH.S; 3/. (c) Stack S after the call POP.S/ has returned the element 3, which is the one most 
recently pushed. Although element 3 still appears in the array, it is no longer in the stack. The top is 
element 17. 

When S: top D 0, the stack contains no elements and is empty. We can test 
whether the stack is empty with the query operation STAC K-EMPTY. Upon an 
attempt to pop an empty stack, the stack underüows, which is normally an error. If 
S: top exceeds S: size, the stack overüows. 

The procedures STAC K-EMPTY, PUSH, and POP implement each of the stack 
operations with just a few lines of code. Figure 10.2 shows the effects of the 
modifying operations PUSH and POP. Each of the three stack operations takes 
O.1/ time. 

STAC K-EMPTY .S/ 
1 if S: top = = 0 
2 return TRUE 
3 else return FALSE 

PUSH.S; x/ 
1 if S: top = = S: size 
2 error <overüow= 
3 else S: top D S: top C 1 
4 SŒS: top� D x 

POP.S/ 
1 if STAC K-EMPTY .S/ 
2 error <underüow= 
3 else S: top D S: top  1 
4 return SŒS: top C 1� 
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1 2 3 4 5 6 7 8 9 10 11 12 

Q (a) 15 6 9 8 4 

1 2 3 4 5 6 7 8 9 10 11 12 

Q (b) 15 6 9 8 4 3 5 17 

1 2 3 4 5 6 7 8 9 10 11 12 

Q (c) 15 6 9 8 4 3 5 17 

Q: head D 7 

Q: head D 7 Q: tail D 12 

Q: tail D 3 

Q: tail D 3 

Q: head D 8 

Figure 10.3 A queue implemented using an array QŒ1 W 12�. Queue elements appear only in the tan 
positions. (a) The queue has 5 elements, in locations QŒ7 W 11�. (b) The conûguration of the queue 
after the calls ENQUEUE.Q; 17/, ENQUEUE.Q; 3/, and ENQUEUE.Q; 5/. (c) The conûguration of 
the queue after the call DEQUEUE.Q/ returns the key value 15 formerly at the head of the queue. 
The new head has key 6. 

Queues 
We call the I NSERT operation on a queue ENQUEUE, and we call the DELETE 
operation DEQUEUE. Like the stack operation POP, DEQUEUE takes no element 
argument. The FIFO property of a queue causes it to operate like a line of cus- 
tomers waiting for service. The queue has a head and a tail. When an element is 
enqueued, it takes its place at the tail of the queue, just as a newly arriving cus- 
tomer takes a place at the end of the line. The element dequeued is always the one 
at the head of the queue, like the customer at the head of the line, who has waited 
the longest. 
Figure 10.3 shows one way to implement a queue of at most n  1 elements 

using an array QŒ1 W n�, with the attribute Q: size equaling the size n of the array. 
The queue has an attribute Q: head that indexes, or points to, its head. The attribute 
Q: tail indexes the next location at which a newly arriving element will be inserted 
into the queue. The elements in the queue reside in locations Q: head ;Q: head C 1; 
: : : ;Q: tail  1, where we <wrap around= in the sense that location 1 immediately 
follows location n in a circular order. When Q: head D Q: tail, the queue is empty. 
Initially, we have Q: head D Q: tail D 1. An attempt to dequeue an element from 
an empty queue causes the queue to underüow. When Q: head D Q: tail C1 or both 
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Q: head D 1 and Q: tail D Q: size, the queue is full, and an attempt to enqueue an 
element causes the queue to overüow. 

In the procedures ENQUEUE and DEQUEUE, we have omitted the error checking 
for underüow and overüow. (Exercise 10.1-5 asks you to supply these checks.) 
Figure 10.3 shows the effects of the ENQUEUE and DEQUEUE operations. Each 
operation takes O.1/ time. 

ENQUEUE.Q; x/ 
1 QŒQ: tail� D x 
2 if Q: tail == Q: size 
3 Q: tail D 1 
4 else Q: tail D Q: tail C 1 

DEQUEUE.Q/ 
1 x D QŒQ: head � 
2 if Q: head == Q: size 
3 Q: head D 1 
4 else Q: head D Q: head C 1 
5 return x 

Exercises 
10.1-1 
Consider an m  n matrix in row-major order, where both m and n are powers of 2 
and rows and columns are indexed from 0. We can represent a row index i in binary 
by the lg m bits hi lg m1 ; i lg m2 ; : : : ; i 0 i and a column index j in binary by the lg n 
bits hj lg n1 ; j lg n2 ; : : : ; j 0 i. Suppose that this matrix is a 2  2 block matrix, where 
each block has m=2 rows and n=2 columns, and it is to be represented by a single 
array with 0-origin indexing. Show how to construct the binary representation of 
the .lg m C lg n/-bit index into the single array from the binary representations of 
i and j . 
10.1-2 
Using Figure 10.2 as a model, illustrate the result of each operation in the sequence 
PUSH.S; 4/, PUSH.S; 1/, PUSH.S; 3/, POP.S/, PUSH.S; 8/, and POP.S/ on an 
initially empty stack S stored in array SŒ1 W 6� 
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10.1-3 
Explain how to implement two stacks in one array AŒ1 W n� in such a way that neither 
stack overüows unless the total number of elements in both stacks together is n. 
The PUSH and POP operations should run in O.1/ time. 
10.1-4 
Using Figure 10.3 as a model, illustrate the result of each operation in the 
sequence ENQUEUE.Q; 4/, ENQUEUE.Q; 1/, ENQUEUE.Q; 3/, DEQUEUE.Q/, 
ENQUEUE.Q; 8/, and DEQUEUE.Q/ on an initially empty queue Q stored in 
array QŒ1 W 6�. 
10.1-5 
Rewrite ENQUEUE and DEQUEUE to detect underüow and overüow of a queue. 
10.1-6 
Whereas a stack allows insertion and deletion of elements at only one end, and a 
queue allows insertion at one end and deletion at the other end, a deque (double- 
ended queue, pronounced like <deck=) allows insertion and deletion at both ends. 
Write four O.1/-time procedures to insert elements into and delete elements from 
both ends of a deque implemented by an array. 
10.1-7 
Show how to implement a queue using two stacks. Analyze the running time of the 
queue operations. 
10.1-8 
Show how to implement a stack using two queues. Analyze the running time of the 
stack operations. 

10.2 Linked lists 

A linked list is a data structure in which the objects are arranged in a linear order. 
Unlike an array, however, in which the linear order is determined by the array 
indices, the order in a linked list is determined by a pointer in each object. Since the 
elements of linked lists often contain keys that can be searched for, linked lists are 
sometimes called search lists. Linked lists provide a simple, üexible representation 
for dynamic sets, supporting (though not necessarily efûciently) all the operations 
listed on page 250. 
As shown in Figure 10.4, each element of a doubly linked list L is an object 

with an attribute key and two pointer attributes: next and prev. The object may 
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36 16 1 L: head 

L: head 
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Figure 10.4 (a) A doubly linked list L representing the dynamic set f1; 4; 9; 16g. Each element in 
the list is an object with attributes for the key and pointers (shown by arrows) to the next and previous 
objects. The next attribute of the tail and the prev attribute of the head are NIL, indicated by a diagonal 
slash. The attribute L: head points to the head. (b) Following the execution of L IST-PREPEND.L; x/, 
where x: key D 25, the linked list has an object with key 25 as the new head. This new object points 
to the old head with key 9. (c) The result of calling L IST-I NSERT.x; y/, where x: key D 36 and y 
points to the object with key 9. (d) The result of the subsequent call L IST-DELETE.L; x/, where 
x points to the object with key 4. 

also contain other satellite data. Given an element x in the list, x: next points to its 
successor in the linked list, and x: prev points to its predecessor. If x: prev D NIL, 
the element x has no predecessor and is therefore the ûrst element, or head, of 
the list. If x: next D NIL, the element x has no successor and is therefore the last 
element, or tail, of the list. An attribute L: head points to the ûrst element of the 
list. If L: head D NIL, the list is empty. 

A list may have one of several forms. It may be either singly linked or doubly 
linked, it may be sorted or not, and it may be circular or not. If a list is singly 
linked, each element has a next pointer but not a prev pointer. If a list is sorted, the 
linear order of the list corresponds to the linear order of keys stored in elements 
of the list. The minimum element is then the head of the list, and the maximum 
element is the tail. If the list is unsorted, the elements can appear in any order. In 
a circular list, the prev pointer of the head of the list points to the tail, and the next 
pointer of the tail of the list points to the head. You can think of a circular list as a 
ring of elements. In the remainder of this section, we assume that the lists we are 
working with are unsorted and doubly linked. 
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Searching a linked list 
The procedure LIST-SEARCH .L; k/ ûnds the ûrst element with key k in list L 
by a simple linear search, returning a pointer to this element. If no object with 
key k appears in the list, then the procedure returns NIL. For the linked list in 
Figure 10.4(a), the call LIST-SEARCH .L; 4/ returns a pointer to the third element, 
and the call LIST-SEARCH .L; 7/ returns NIL. To search a list of n objects, the 
LIST-SEARCH procedure takes ‚.n/ time in the worst case, since it may have to 
search the entire list. 

LIST-SEARCH .L; k/ 
1 x D L: head 
2 while x ¤ NIL and x: key ¤ k 
3 x D x: next 
4 return x 

Inserting into a linked list 
Given an element x whose key attribute has already been set, the LIST-PREPEND 
procedure adds x to the front of the linked list, as shown in Figure 10.4(b). (Re- 
call that our attribute notation can cascade, so that L: head: prev denotes the prev 
attribute of the object that L: head points to.) The running time for LIST-PREPEND 
on a list of n elements is O.1/. 

LIST-PREPEND .L; x/ 
1 x: next D L: head 
2 x: prev D NIL 
3 if L: head ¤ NIL 
4 L: head: prev D x 
5 L: head D x 

You can insert anywhere within a linked list. As Figure 10.4(c) shows, if you 
have a pointer y to an object in the list, the LIST-I NSERT procedure on the facing 
page <splices= a new element x into the list, immediately following y , in O.1/ 
time. Since LIST-I NSERT never references the list object L, it is not supplied as a 
parameter. 
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LIST-I NSERT .x; y/ 
1 x: next D y: next 
2 x: prev D y 
3 if y: next ¤ NIL 
4 y: next: prev D x 
5 y: next D x 

Deleting from a linked list 
The procedure LIST-DELETE removes an element x from a linked list L. It must 
be given a pointer to x , and it then <‘splices= x out of the list by updating pointers. 
To delete an element with a given key, ûrst call L IST-SEARCH to retrieve a pointer 
to the element. Figure 10.4(d) shows how an element is deleted from a linked list. 
LIST-DELETE runs in O.1/ time, but to delete an element with a given key, the call 
to LIST-SEARCH makes the worst-case running time be ‚.n/. 

LIST-DELETE .L; x/ 
1 if x: prev ¤ NIL 
2 x: prev: next D x: next 
3 else L: head D x: next 
4 if x: next ¤ NIL 
5 x: next: prev D x: prev 

Insertion and deletion are faster operations on doubly linked lists than on arrays. 
If you want to insert a new ûrst element into an array or delete the ûrst element in 
an array, maintaining the relative order of all the existing elements, then each of the 
existing elements needs to be moved by one position. In the worst case, therefore, 
insertion and deletion take ‚.n/ time in an array, compared with O.1/ time for a 
doubly linked list. (Exercise 10.2-1 asks you to show that deleting an element from 
a singly linked list takes ‚.n/ time in the worst case.) If, however, you want to ûnd 
the kth element in the linear order, it takes just O.1/ time in an array regardless 
of k, but in a linked list, you’d have to traverse k elements, taking ‚.k/ time. 

Sentinels 
The code for LIST-DELETE is simpler if you ignore the boundary conditions at the 
head and tail of the list: 
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L: nil 

L: nil 

L: nil 
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Figure 10.5 A circular, doubly linked list with a sentinel. The sentinel L: nil, in blue, appears 
between the head and tail. The attribute L: head is no longer needed, since the head of the list 
is L: nil: next. (a) An empty list. (b) The linked list from Figure 10.4(a), with key 9 at the head and 
key 1 at the tail. (c) The list after executing LIST-I NSERT 0 .x;L: nil/, where x: key D 25. The new 
object becomes the head of the list. (d) The list after deleting the object with key 1. The new tail 
is the object with key 4. (e) The list after executing LIST-I NSERT 0 .x; y/, where x: key D 36 and y 
points to the object with key 9. 

LIST-DELETE 0 .x/ 
1 x: prev: next D x: next 
2 x: next : prev D x: prev 

A sentinel is a dummy object that allows us to simplify boundary conditions. 
In a linked list L, the sentinel is an object L: nil that represents NIL but has all 
the attributes of the other objects in the list. References to NIL are replaced by 
references to the sentinel L: nil. As shown in Figure 10.5, this change turns a 
regular doubly linked list into a circular, doubly linked list with a sentinel, in 
which the sentinel L: nil lies between the head and tail. The attribute L: nil: next 
points to the head of the list, and L: nil: prev points to the tail. Similarly, both the 
next attribute of the tail and the prev attribute of the head point to L: nil. Since 
L: nil: next points to the head, the attribute L: head is eliminated altogether, with 
references to it replaced by references to L: nil: next . Figure 10.5(a) shows that an 
empty list consists of just the sentinel, and both L: nil: next and L: nil: prev point 
to L: nil. 
To delete an element from the list, just use the two-line procedure LIST-DELETE 0 

from before. Just as LIST-I NSERT never references the list object L, neither does 
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LIST-DELETE 0 . You should never delete the sentinel L: nil unless you are deleting 
the entire list! 

The LIST-I NSERT 0 procedure inserts an element x into the list following ob- 
ject y . No separate procedure for prepending is necessary: to insert at the head of 
the list, let y be L: nil; and to insert at the tail, let y be L: nil: prev. Figure 10.5 
shows the effects of LIST-I NSERT 0 and LIST-DELETE 0 on a sample list. 

LIST-I NSERT 0 .x; y/ 
1 x: next D y: next 
2 x: prev D y 
3 y: next: prev D x 
4 y: next D x 

Searching a circular, doubly linked list with a sentinel has the same asymptotic 
running time as without a sentinel, but it is possible to decrease the constant factor. 
The test in line 2 of LIST-SEARCH makes two comparisons: one to check whether 
the search has run off the end of the list and, if not, one to check whether the key 
resides in the current element x . Suppose that you know that the key is somewhere 
in the list. Then you do not need to check whether the search runs off the end of 
the list, thereby eliminating one comparison in each iteration of the while loop. 

The sentinel provides a place to put the key before starting the search. The search 
starts at the head L: nil: next of list L, and it stops if it ûnds the key somewhere in 
the list. Now the search is guaranteed to ûnd the key, either in the sentinel or before 
reaching the sentinel. If the key is found before reaching the sentinel, then it really 
is in the element where the search stops. If, however, the search goes through all the 
elements in the list and ûnds the key only in the sentinel, then the key is not really 
in the list, and the search returns NIL. The procedure LIST-SEARCH 0 embodies this 
idea. (If your sentinel requires its key attribute to be NIL, then you might want to 
assign L: nil: key D NIL before line 5.) 

LIST-SEARCH 0 .L; k/ 
1 L: nil: key D k // store the key in the sentinel to guarantee it is in list 
2 x D L: nil: next // start at the head of the list 
3 while x: key ¤ k 
4 x D x: next 
5 if x == L: nil // found k in the sentinel 
6 return NIL // k was not really in the list 
7 else return x // found k in element x 
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Sentinels often simplify code and, as in searching a linked list, they might speed 
up code by a small constant factor, but they don’t typically improve the asymptotic 
running time. Use them judiciously. When there are many small lists, the extra 
storage used by their sentinels can represent signiûcant wasted memory. In this 
book, we use sentinels only when they signiûcantly simplify the code. 

Exercises 
10.2-1 
Explain why the dynamic-set operation I NSERT on a singly linked list can be im- 
plemented in O.1/ time, but the worst-case time for DELETE is ‚.n/. 
10.2-2 
Implement a stack using a singly linked list. The operations PUSH and POP should 
still take O.1/ time. Do you need to add any attributes to the list? 
10.2-3 
Implement a queue using a singly linked list. The operations ENQUEUE and 
DEQUEUE should still take O.1/ time. Do you need to add any attributes to the 
list? 
10.2-4 
The dynamic-set operation UNION takes two disjoint sets S 1 and S 2 as input, and 
it returns a set S D S 1 [ S 2 consisting of all the elements of S 1 and S 2 . The 
sets S 1 and S 2 are usually destroyed by the operation. Show how to support UNION 
in O.1/ time using a suitable list data structure. 
10.2-5 
Give a ‚.n/-time nonrecursive procedure that reverses a singly linked list of n 
elements. The procedure should use no more than constant storage beyond that 
needed for the list itself. 

? 10.2-6 
Explain how to implement doubly linked lists using only one pointer value x: np 
per item instead of the usual two (next and prev). Assume that all pointer values 
can be interpreted as k-bit integers, and deûne x: np D x: next XOR x: prev, the 
k-bit <exclusive-or= of x: next and x: prev. The value NIL is represented by 0. Be 
sure to describe what information you need to access the head of the list. Show 
how to implement the SEARCH, I NSERT, and DELETE operations on such a list. 
Also show how to reverse such a list in O.1/ time. 
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10.3 Representing rooted trees 

Linked lists work well for representing linear relationships, but not all relationships 
are linear. In this section, we look speciûcally at the problem of representing rooted 
trees by linked data structures. We ûrst look at binary trees, and then we present a 
method for rooted trees in which nodes can have an arbitrary number of children. 

We represent each node of a tree by an object. As with linked lists, we assume 
that each node contains a key attribute. The remaining attributes of interest are 
pointers to other nodes, and they vary according to the type of tree. 

Binary trees 
Figure 10.6 shows how to use the attributes p, left , and right to store pointers to 
the parent, left child, and right child of each node in a binary tree T . If x: p D NIL, 
then x is the root. If node x has no left child, then x: left D NIL, and similarly for 
the right child. The root of the entire tree T is pointed to by the attribute T: root . If 
T: root D NIL, then the tree is empty. 

Rooted trees with unbounded branching 
It’s simple to extend the scheme for representing a binary tree to any class of trees 
in which the number of children of each node is at most some constant k: replace 
the left and right attributes by child 1 ; child 2 ; : : : ; child k . This scheme no longer 
works when the number of children of a node is unbounded, however, since we do 
not know how many attributes to allocate in advance. Moreover, if k, the number 
of children, is bounded by a large constant but most nodes have a small number of 
children, we may waste a lot of memory. 

Fortunately, there is a clever scheme to represent trees with arbitrary numbers of 
children. It has the advantage of using only O.n/ space for any n-node rooted tree. 
The left-child, right-sibling representation appears in Figure 10.7. As before, each 
node contains a parent pointer p, and T: root points to the root of tree T . Instead 
of having a pointer to each of its children, however, each node x has only two 
pointers: 
1. x: left-child points to the leftmost child of node x , and 
2. x: right-sibling points to the sibling of x immediately to its right. 
If node x has no children, then x: left-child D NIL, and if node x is the rightmost 
child of its parent, then x: right-sibling D NIL. 
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T: root 

Figure 10.6 The representation of a binary tree T . Each node x has the attributes x: p (top), x: left 
(lower left), and x: right (lower right). The key attributes are not shown. 

T: root 

Figure 10.7 The left-child, right-sibling representation of a tree T . Each node x has attributes x: p 
(top), x: left-child (lower left), and x: right-sibling (lower right). The key attributes are not shown. 
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Other tree representations 
We sometimes represent rooted trees in other ways. In Chapter 6, for example, 
we represented a heap, which is based on a complete binary tree, by a single array 
along with an attribute giving the index of the last node in the heap. The trees that 
appear in Chapter 19 are traversed only toward the root, and so only the parent 
pointers are present: there are no pointers to children. Many other schemes are 
possible. Which scheme is best depends on the application. 

Exercises 
10.3-1 
Draw the binary tree rooted at index 6 that is represented by the following at- 
tributes: 
index key left right 
1 17 8 9 
2 14 NIL NIL 
3 12 NIL NIL 
4 20 10 NIL 
5 33 2 NIL 
6 15 1 4 
7 28 NIL NIL 
8 22 NIL NIL 
9 13 3 7 
10 25 NIL 5 

10.3-2 
Write an O.n/-time recursive procedure that, given an n-node binary tree, prints 
out the key of each node in the tree. 
10.3-3 
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree, 
prints out the key of each node in the tree. Use a stack as an auxiliary data structure. 
10.3-4 
Write an O.n/-time procedure that prints out all the keys of an arbitrary rooted tree 
with n nodes, where the tree is stored using the left-child, right-sibling representa- 
tion. 

? 10.3-5 
Write an O.n/-time nonrecursive procedure that, given an n-node binary tree, 
prints out the key of each node. Use no more than constant extra space outside 
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of the tree itself and do not modify the tree, even temporarily, during the proce- 
dure. 

? 10.3-6 
The left-child, right-sibling representation of an arbitrary rooted tree uses three 
pointers in each node: left-child , right-sibling, and parent . From any node, its 
parent can be accessed in constant time and all its children can be accessed in 
time linear in the number of children. Show how to use only two pointers and 
one boolean value in each node x so that x ’s parent or all of x ’s children can be 
accessed in time linear in the number of x ’s children. 

Problems 

10-1 Comparisons among lists 
For each of the four types of lists in the following table, what is the asymptotic 
worst-case running time for each dynamic-set operation listed? 

unsorted, sorted, unsorted, sorted, 
singly singly doubly doubly 
linked linked linked linked 

SEARCH 
I NSERT 
DELETE 
SUCCESSOR 

PREDECESSOR 

MINIMUM 
MAXIMUM 

10-2 Mergeable heaps using linked lists 
A mergeable heap supports the following operations: MAKE-HEAP (which creates 
an empty mergeable heap), I NSERT, MINIMUM, EXTRACT-MIN, and UNION. 1 

1 Because we have deûned a mergeable heap to support M INIMUM and EXTRACT-MIN, we can also 
refer to it as a mergeable min-heap. Alternatively, if it supports MAXIMUM and EXTRACT-MAX, it 
is a mergeable max-heap. 
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Show how to implement mergeable heaps using linked lists in each of the following 
cases. Try to make each operation as efûcient as possible. Analyze the running 
time of each operation in terms of the size of the dynamic set(s) being operated on. 
a. Lists are sorted. 

b. Lists are unsorted. 

c. Lists are unsorted, and dynamic sets to be merged are disjoint. 

10-3 Searching a sorted compact list 
We can represent a singly linked list with two arrays, key and next . Given the 
index i of an element, its value is stored in keyŒi �, and the index of its successor is 
given by next Œi �, where next Œi � D NIL for the last element. We also need the index 
head of the ûrst element in the list. An n-element list stored in this way is compact 
if it is stored only in positions 1 through n of the key and next arrays. 
Let’s assume that all keys are distinct and that the compact list is also sorted, 

that is, keyŒi � < keyŒnext Œi �� for all i D 1; 2; : : : ; n such that next Œi � ¤ NIL. Under 
these assumptions, you will show that the randomized algorithm COMPACT -LIST- 
SEARCH searches the list for key k in O. p 

n/ expected time. 

COMPACT -LIST-SEARCH .key; next ; head ; n; k/ 
1 i D head 
2 while i ¤ NIL and keyŒi � < k 
3 j D RANDOM.1; n/ 
4 if keyŒi � < keyŒj � and keyŒj � හ k 
5 i D j 
6 if keyŒi � == k 
7 return i 
8 i D next Œi � 
9 if i == NIL or keyŒi � > k 
10 return NIL 
11 else return i 

If you ignore lines 337 of the procedure, you can see that it’s an ordinary algo- 
rithm for searching a sorted linked list, in which index i points to each position of 
the list in turn. The search terminates once the index i <falls off= the end of the list 
or once keyŒi �  k. In the latter case, if keyŒi � D k, the procedure has found a key 
with the value k. If, however, keyŒi � > k, then the search will never ûnd a key with 
the value k, so that terminating the search was the correct action. 



270 Chapter 10 Elementary Data Structures 

Lines 337 attempt to skip ahead to a randomly chosen position j . Such a skip 
helps if keyŒj � is larger than keyŒi � and no larger than k. In such a case, j marks 
a position in the list that i would reach during an ordinary list search. Because 
the list is compact, we know that any choice of j between 1 and n indexes some 
element in the list. 

Instead of analyzing the performance of COMPACT -LIST-SEARCH directly, you 
will analyze a related algorithm, COMPACT -LIST-SEARCH 0 , which executes two 
separate loops. This algorithm takes an additional parameter t , which speciûes an 
upper bound on the number of iterations of the ûrst loop. 

COMPACT -LIST-S EARCH 0 .key; next ; head ; n; k; t/ 
1 i D head 
2 for q D 1 to t 
3 j D RANDOM.1; n/ 
4 if keyŒi � < keyŒj � and keyŒj � හ k 
5 i D j 
6 if keyŒi � == k 
7 return i 
8 while i ¤ NIL and keyŒi � < k 
9 i D next Œi � 
10 if i = = NIL or keyŒi � > k 
11 return NIL 
12 else return i 

To compare the execution of the two algorithms, assume that the sequence of 
calls of RANDOM.1; n/ yields the same sequence of integers for both algorithms. 
a. Argue that for any value of t , COMPACT -LIST-SEARCH .key; next ; head; n; k/ 

and COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/ return the same result 
and that the number of iterations of the while loop of lines 238 in COMPACT - 
LIST-SEARCH is at most the total number of iterations of both the for and while 
loops in COMPACT -LIST-SEARCH 0 . 

In the call COMPACT -LIST-SEARCH 0 .key; next ; head; n; k; t/, let X t be the random 
variable that describes the distance in the linked list (that is, through the chain of 
next pointers) from position i to the desired key k after t iterations of the for loop 
of lines 237 have occurred. 
b. Argue that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected 

running time of O.t C E ŒX t �/. 

c. Show that E ŒX t � D 
P n 

r D1 .1r=n/ t . (Hint: Use equation (C.28) on page 1193.) 
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d. Show that P n1 
r D0 r t හ n t C1 =.t C1/. (Hint: Use inequality (A.18) on page 1150.) 

e. Prove that E ŒX t � හ n=.t C 1/. 

f. Show that COMPACT -LIST-SEARCH 0 .key; next ; head ; n; k; t/ has an expected 
running time of O.t C n=t/. 

g. Conclude that COMPACT -LIST-SEARCH runs in O. p 
n/ expected time. 

h. Why do we assume that all keys are distinct in COMPACT -LIST-SEARCH? Ar- 
gue that random skips do not necessarily help asymptotically when the list con- 
tains repeated key values. 

Chapter notes 

Aho, Hopcroft, and Ullman [6] and Knuth [259] are excellent references for ele- 
mentary data structures. Many other texts cover both basic data structures and their 
implementation in a particular programming language. Examples of these types of 
textbooks include Goodrich and Tamassia [196], Main [311], Shaffer [406], and 
Weiss [452, 453, 454]. The book by Gonnet and Baeza-Yates [193] provides ex- 
perimental data on the performance of many data-structure operations. 

The origin of stacks and queues as data structures in computer science is un- 
clear, since corresponding notions already existed in mathematics and paper-based 
business practices before the introduction of digital computers. Knuth [259] cites 
A. M. Turing for the development of stacks for subroutine linkage in 1947. 
Pointer-based data structures also seem to be a folk invention. According to 

Knuth, pointers were apparently used in early computers with drum memories. The 
A-1 language developed by G. M. Hopper in 1951 represented algebraic formulas 
as binary trees. Knuth credits the IPL-II language, developed in 1956 by A. Newell, 
J. C. Shaw, and H. A. Simon, for recognizing the importance and promoting the 
use of pointers. Their IPL-III language, developed in 1957, included explicit stack 
operations. 


