
Breadth-First Search (BFS) and Depth-First Search (DFS)

Breadth-First Search (BFS) - Step by Step

Goal: Visit nodes level by level (i.e., visit all nodes at depth 1, then at depth 2, and so on).

Starting BFS from node 1:

1. Initialize the Queue:
○ Queue = [1]
○ Visited = {1}

2. Process Node 1:
○ Dequeue 1, print it: 1
○ Enqueue neighbors of 1 (nodes 2 and 3):

■ Queue = [2, 3]
■ Visited = {1, 2, 3}

3. Process Node 2:
○ Dequeue 2, print it: 2
○ Enqueue neighbors of 2 (nodes 4 and 5):

■ Queue = [3, 4, 5]
■ Visited = {1, 2, 3, 4, 5}

4. Process Node 3:
○ Dequeue 3, print it: 3
○ Enqueue the neighbor of 3 (node 6):

■ Queue = [4, 5, 6]
■ Visited = {1, 2, 3, 4, 5, 6}

5. Process Node 4:
○ Dequeue 4, print it: 4
○ Node 4 has no neighbors:

■ Queue = [5, 6]
■ Visited = {1, 2, 3, 4, 5, 6}

6. Process Node 5:
○ Dequeue 5, print it: 5
○ Node 5 has no neighbors:

■ Queue = [6]
■ Visited = {1, 2, 3, 4, 5, 6}

7. Process Node 6:
○ Dequeue 6, print it: 6
○ Node 6 has no neighbors:

■ Queue = []
■ Visited = {1, 2, 3, 4, 5, 6}

BFS Order: 1, 2, 3, 4, 5, 6



Depth-First Search (DFS) - Step by Step

Goal: Visit nodes by going as deep as possible in the graph (i.e., move to one branch
completely before backtracking).

Starting DFS from node 1:

1. Initialize the Stack:
○ Stack = [1]
○ Visited = {1}

2. Process Node 1:
○ Pop 1, print it: 1
○ Push the neighbors of 1 (nodes 3 and 2) onto the stack:

■ Stack = [3, 2]
■ Visited = {1}

3. Process Node 2:
○ Pop 2, print it: 2
○ Push the neighbors of 2 (nodes 5 and 4) onto the stack:

■ Stack = [3, 5, 4]
■ Visited = {1, 2}

4. Process Node 4:
○ Pop 4, print it: 4
○ Node 4 has no neighbors:

■ Stack = [3, 5]
■ Visited = {1, 2, 4}

5. Process Node 5:
○ Pop 5, print it: 5
○ Node 5 has no neighbors:

■ Stack = [3]
■ Visited = {1, 2, 4, 5}

6. Process Node 3:
○ Pop 3, print it: 3
○ Push the neighbor of 3 (node 6) onto the stack:

■ Stack = [6]
■ Visited = {1, 2, 3, 4, 5}

7. Process Node 6:
○ Pop 6, print it: 6
○ Node 6 has no neighbors:

■ Stack = []
■ Visited = {1, 2, 3, 4, 5, 6}

DFS Order: 1, 2, 4, 5, 3, 6



Java Code for BFS
import java.util.*;

public class BFSExample {
public static void bfs(int start, Map<Integer, List<Integer>> graph) {
Queue<Integer> queue = new LinkedList<>();
Set<Integer> visited = new HashSet<>();

queue.add(start);
visited.add(start);

while (!queue.isEmpty()) {
int node = queue.poll();
System.out.print(node + " ");

for (int neighbor : graph.get(node)) {
if (!visited.contains(neighbor)) {
queue.add(neighbor);
visited.add(neighbor);

}
}

}
}

public static void main(String[] args) {
// Example graph
Map<Integer, List<Integer>> graph = new HashMap<>();
graph.put(1, Arrays.asList(2, 3));
graph.put(2, Arrays.asList(4, 5));
graph.put(3, Arrays.asList(6));
graph.put(4, new ArrayList<>());
graph.put(5, new ArrayList<>());
graph.put(6, new ArrayList<>());

System.out.println("BFS traversal starting from node 1:");
bfs(1, graph);

}
}

BFS traversal starting from node 1:
1 2 3 4 5 6



Java Code for DFS
import java.util.*;

public class DFSExample {
public static void dfs(int start, Map<Integer, List<Integer>> graph) {
Stack<Integer> stack = new Stack<>();
Set<Integer> visited = new HashSet<>();

stack.push(start);
visited.add(start);

while (!stack.isEmpty()) {
int node = stack.pop();
System.out.print(node + " ");

for (int neighbor : graph.get(node)) {
if (!visited.contains(neighbor)) {
stack.push(neighbor);
visited.add(neighbor);

}
}

}
}

public static void main(String[] args) {
// Example graph
Map<Integer, List<Integer>> graph = new HashMap<>();
graph.put(1, Arrays.asList(2, 3));
graph.put(2, Arrays.asList(4, 5));
graph.put(3, Arrays.asList(6));
graph.put(4, new ArrayList<>());
graph.put(5, new ArrayList<>());
graph.put(6, new ArrayList<>());

System.out.println("DFS traversal starting from node 1:");
dfs(1, graph);

}
}

DFS traversal starting from node 1:
1 3 6 2 5 4


