
Coding Assignment for Practice 

(time and Space Complexity) 

(Dr. GC Jana) 

 

Coding Assignment 1: Analyzing Time Complexity 

Objective: Implement simple algorithms and analyze their time complexity. 

 

1. Linear Search Implementation: 

o Write a Python function to implement linear search on an unsorted list. 

o Analyze the time complexity of your implementation. 

 

2. Binary Search Implementation: 

• Implement binary search on a sorted list. 

• Analyze the time complexity of binary search in the best, worst, and average cases 

 

3. Comparative Analysis: 

• Compare the time complexities of linear search and binary search. Write a brief report on which search 

method is more efficient under different circumstances. 

 

Coding Assignment 2: Sorting Algorithms 

Objective: Implement sorting algorithms and analyze their performance. 

 

1. Bubble Sort Implementation: 

• Write a Python function to implement bubble sort. 

• Analyze the time complexity in the best and worst cases. 

2. Merge Sort Implementation: 

• Implement merge sort in Python. 

• Analyze the time complexity and compare it with bubble sort. 

3. Performance Comparison: 

• Write a Python script to generate random lists of different sizes. 

• Test both sorting algorithms on these lists and measure their execution times. 

• Present your findings in a report, explaining which algorithm performs better and why. 

 

Coding Assignment 3: Exploring O(log n) Complexity 

Objective: Implement and analyze algorithms with logarithmic time complexity. 

 

1. Exponentiation by Squaring: 

• Implement an algorithm to calculate a^b in logarithmic time using exponentiation by squaring. 

• Analyze the time complexity of your algorithm. 

2. Binary Search Tree (BST) Operations: 

• Implement insertion and search operations in a binary search tree. 

• Analyze the time complexity of these operations. 

Coding Assignment 4: Advanced Problem Solving 

Objective: Apply algorithmic complexity concepts to solve real-world problems. 

1. Dijkstra's Algorithm: 

• Implement Dijkstra's algorithm to find the shortest path in a weighted graph. 

• Analyze the time complexity of your implementation. 

2. Knapsack Problem: 

• Implement the 0/1 Knapsack problem using dynamic programming. 

• Analyze the time and space complexities of your algorithm. 

3. Optimizing Algorithms: 

• Choose a standard algorithm with a known time complexity (e.g., O(n²)) and propose an optimization to 

improve its efficiency. 

o Implement the optimized version and compare it with the original in terms of time complexity and 

execution time. 


